# Copyright (c) 2020, Apple Inc. All rights reserved.
#
# Use of this source code is governed by a BSD-3-clause license that can be
# found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause
from coremltools.converters.mil.mil import Operation, types
from coremltools.converters.mil.mil.block import curr_opset_version
from coremltools.converters.mil.mil.input_type import (DefaultInputs,
InputSpec,
TensorInputType)
from coremltools.converters.mil.mil.ops.defs._op_reqs import register_op
from coremltools.converters.mil.mil.ops.defs._utils import \
spatial_dimensions_out_shape
from coremltools.converters.mil.mil.ops.defs.iOS15 import _IOS15_TARGET
class Pooling(Operation):
"""
Pooling Op Superclass
"""
input_spec = InputSpec(
x=TensorInputType(type_domain="T"),
kernel_sizes=TensorInputType(const=True, type_domain=types.int32),
strides=TensorInputType(const=True, optional=True, type_domain=types.int32),
pad_type=TensorInputType(const=True, type_domain=types.str),
pad=TensorInputType(const=True, optional=True, type_domain=types.int32),
ceil_mode=TensorInputType(const=True, optional=True, type_domain=types.bool),
)
type_domains = {
"T": (types.fp16, types.fp32),
}
def default_inputs(self):
num_spatial_dims = self.x.rank - 2
return DefaultInputs(
strides=[1] * num_spatial_dims,
pad=[0] * 2 * num_spatial_dims,
ceil_mode=False,
)
def type_inference(self):
ksize = self.kernel_sizes.val
x_shape = self.x.shape
D_in_rank = len(x_shape) - 2
strides = [1] * D_in_rank if self.strides is None else self.strides.val
pad_type = "valid" if self.pad_type is None else self.pad_type.val.lower()
if pad_type not in ["valid", "same", "custom", "same_lower"]:
raise ValueError("Unrecognized value of pad_type : {}".format(pad_type))
pad = None if self.pad is None else self.pad.val
D_in = x_shape[2:] # spatial dimensions
if self.ceil_mode.val:
if D_in_rank > 2:
raise ValueError('pool: ceil_mode only supported for 1D or 2D pool')
if pad_type == "same" and self.ceil_mode.val:
raise ValueError("ceil_mode must be False when pad_type==same")
if pad is not None:
for i in range(D_in_rank):
if pad[2 * i] != pad[2 * i + 1]:
raise ValueError("Padding must be symmetric if ceil_mode is True")
# The same_lower padding is not supported in iOS15
if curr_opset_version() == _IOS15_TARGET and self.pad_type.val == "same_lower":
msg = "iOS15 version of pooling layers do not support pad_type = `same_lower`"
raise ValueError(msg)
D_out_shape = spatial_dimensions_out_shape(
pad_type=pad_type,
input_shape=D_in,
kernel_shape=ksize,
strides=strides,
custom_pad=pad,
ceil_mode=self.ceil_mode.val,
)
ret_shape = list(x_shape[:2]) + D_out_shape
return types.tensor(self.x.dtype, tuple(ret_shape))
[docs]
@register_op
class avg_pool(Pooling):
"""
Perform average pooling. Supports 1-D, 2-D, and 3-D pool (1, 2, or 3 spatial dimensions).
Parameters
----------
x: tensor<[n,C_in,\*D_in], T> (Required)
* ``3 <= rank <= 5``.
* ``D_in`` are spatial dimensions, ``1 <= len(D_in) <= 3``.
* ``C_in`` is the number of input channels or depth dimensions.
* ``n`` is the batch dimension.
kernel_sizes: const tensor<[K], T> (Required)
* The size of the window for each spatial dimension ``D_in`` of the
input tensor.
* ``K == len(D_in)``
strides: const tensor<[S],i32> (Optional, default to all 1s)
* Stride along each of the spatial dimensions.
* ``S == len(D_in)``.
pad_type: const str (Required)
Must be one of ``valid``, ``same``, ``custom`` or ``same_lower``.
* ``valid``: No padding. This is equivalent to custom pad with ``pad[i] = 0, for
all i``.
* ``same`` : This is equivalent to custom pad with ``pad[2*i] + pad[2*i+1] = kernel_size[i]``.
* ``custom``: Specify custom padding in the parameter pad. note that ``same``
padding is equivalent to custom padding with
``pad[2*i] + pad[2*i+1] = kernel_size[i]``.
* ``same_lower``: Similar to ``same`` but the padding
will place extra rows/cols on the top/left if the padding amount is odd.
pad: const<[P],i32> (Optional. Default to all 0s)
* ``pad`` represents the number of elements to pad before and after each
dimension: ``pad[2*i], pad[2*i+1]`` are the pad size before and after spatial
dimension ``i``.
* ``P = 2 * len(D_in)``.
* ``pad`` should be specified if and only if ``pad_type == custom``
exclude_padding_from_average: const tensor<[], bool> (Optional, default to False)
* If ``True``, padded values (0s) are excluded from the denominator count
when computing the average over the kernel window.
ceil_mode: const<bool>
* Same as PyTorch's ``ceil`` mode.
* ``ceil`` is used instead of floor in calculating the output size.
* Optional, defaults to ``False``.
* Only applicable when ``pad_type`` is ``valid`` or ``custom``.
* When ``ceil_mode`` is True, padding must be symmetric; that is, if specified,
``pad[2*i] == pad[2*i+1]`` must hold.
Returns
-------
tensor<[n, C_out,\*D_out], T>
* Same rank as ``x``.
* ``C_out`` is the number of output channels or depth dimensions.
* When ``ceil_mode = False``:
* ``D_out[i] = floor[(D_in[i] + pad[2*i] + pad[2*i+1] - kernel_sizes[i]) /
strides[i]] +1, for i = 0, .., len(D_in) - 1`` is mathematically the same
as (when all parameters involved are integers):
* ``D_out[i] = ceil [(D_in[i] + pad[2*i] + pad[2*i+1] - kernel_size[i] - 1) / stride[i]], for i = 0, .., len(D_in) - 1``.
* ``*D_out`` is all ones if ``global_pooling`` is ``true``.
* When ``ceil_mode = True``:
* ``D_out[i] = ceil[(D_in[i] + pad[2*i] + pad[2*i+1] - kernel_sizes[i]) / strides[i]] +1, for i = 0, .., len(D_in) - 1``
* If ``(D_out[i] - 1) * strides[i] >= D_in[i] + pad[2*i] and (pad[2*i] + pad[2*i+1] > 0)``
then ``D_out[i] = D_out[i] - 1``.
* The first equation is same as:
* ``D_out[i] = floor[(D_in[i] + pad[2*i] + pad[2*i+1] - kernel_sizes[i] + strides[i] - 1) / strides[i]] +1, for i = 0, .., len(D_in) - 1``
Attributes
----------
T: fp16, fp32
See Also
--------
l2_pool, max_pool
"""
input_spec = (
InputSpec(
exclude_padding_from_average=TensorInputType(
const=True, optional=True, type_domain=types.bool
)
)
+ Pooling.input_spec
)
def default_inputs(self):
return super().default_inputs() + DefaultInputs(
exclude_padding_from_average=False,
)
[docs]
@register_op
class l2_pool(Pooling):
"""
Perform L2 pooling. Supports 1-D and 2-D pool.
Parameters
----------
x: tensor<[n,C_in,*D_in], T> (Required)
* Only support 1d and 2d pooling.
* See :py:class:`avg_pool`.
kernel_sizes: const tensor<[K], T> (Required)
* See :py:class:`avg_pool`.
strides: const tensor<[S],i32> (Optional, default to all 1s)
* See :py:class:`avg_pool`.
pad_type: const str (Required)
* See :py:class:`avg_pool`.
pad: const<[P],i32> (Optional, default to all 0s)
* See :py:class:`avg_pool`.
Returns
-------
tensor<[n, C_out,*D_out], T>
* See :py:class:`avg_pool`.
Attributes
----------
T: fp16, fp32
See Also
--------
avg_pool, max_pool
"""
def type_inference(self):
if self.x.rank - 2 > 2:
msg = "l2_pool only supports rank 1 or 2. Got rank: {}".format(self.x.rank - 2)
raise ValueError(msg)
return super().type_inference()
[docs]
@register_op
class max_pool(Pooling):
"""
Perform max pooling. Supports 1-D, 2-D, and 3-D pool.
Parameters
----------
x: tensor<[n,C_in,*D_in], T> (Required)
* See :py:class:`avg_pool`.
kernel_sizes: const tensor<[K], T> (Required)
* See :py:class:`avg_pool`.
strides: const tensor<[S],i32> (Optional, default to all 1s)
* See :py:class:`avg_pool`.
pad_type: const str (Required)
* See :py:class:`avg_pool`.
pad: const<[P],i32> (Optional, default to all 0s)
* See :py:class:`avg_pool`.
ceil_mode: const<bool>
* see :py:class:`avg_pool`.
Returns
-------
tensor<[n, C_out,*D_out], T>
* See :py:class:`avg_pool`.
Attributes
----------
T: fp16, fp32
See Also
--------
avg_pool, l2_pool
"""
pass