Source code for coremltools.converters.mil.mil.passes.defs.cleanup.fuse_reduce_mean

#  Copyright (c) 2023, Apple Inc. All rights reserved.
#
#  Use of this source code is governed by a BSD-3-clause license that can be
#  found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause


from coremltools.converters.mil.mil import Builder as mb
from coremltools.converters.mil.mil.passes.graph_pass import AbstractGraphPass
from coremltools.converters.mil.mil.passes.helper import (
    _check_child_op_type,
    _check_var_scalar_value,
    block_context_manager,
)
from coremltools.converters.mil.mil.passes.pass_registry import register_pass
from coremltools.converters.mil.mil.types.symbolic import is_symbolic


[docs] @register_pass(namespace="common") class fuse_reduce_mean(AbstractGraphPass): """ Detect the ``reduce_sum`` ---> ``mul/real_div`` pattern than can be mapped to ``reduce_mean``. That is, the operation ``reduce_sum/count == reduce_mean``. `Input graph` .. code-block:: const (scalar) | input ----> reduce_sum ----> mul/real_div -----------> output `Output graph` .. code-block:: input --------> reduce_mean ---------> output """ def apply(self, prog): for f in prog.functions.values(): block_changed = True while block_changed: block_changed = self._fuse_reduce_mean_block(f) @staticmethod def _try_to_transform(reduce_sum_op, block): ops_to_remove = [] # check that the dimensions in the shape of the input to the reduce_sum op, # over which the reduction operation is being performed, are known input_shape = reduce_sum_op.x.shape if input_shape is None: return False axes = None if reduce_sum_op.axes is not None: axes = reduce_sum_op.axes.val if axes is None: return False count = 1 for dim in axes: if is_symbolic(input_shape[dim]): return False count *= input_shape[dim] # check that output of reduce_sum is not a block output if reduce_sum_op.outputs[0] in block.outputs: return False ops_to_remove.append(reduce_sum_op) # check that reduce_sum op is followed by either: # - mul op with scalar value 1/count # or # - real_div op with scalar value count if _check_child_op_type(reduce_sum_op, "mul"): child_op = list(reduce_sum_op.outputs[0].child_ops)[0] other_input = child_op.x if child_op.y == reduce_sum_op.outputs[0] else child_op.y if not _check_var_scalar_value(other_input, 1.0 / count, 1e-6): return False elif _check_child_op_type(reduce_sum_op, "real_div"): child_op = list(reduce_sum_op.outputs[0].child_ops)[0] if child_op.x != reduce_sum_op.outputs[0]: return False other_input = child_op.y if not _check_var_scalar_value(other_input, count, 1e-2): return False else: return False ops_to_remove.append(child_op) # remove all the ops, and replace with a reduce_mean op out_name = child_op.outputs[0].name x = mb.reduce_mean( x=reduce_sum_op.x, axes=reduce_sum_op.axes.val, keep_dims=reduce_sum_op.keep_dims.val, name=out_name, before_op=child_op, ) child_op.enclosing_block.replace_uses_of_var_after_op( anchor_op=child_op, old_var=child_op.outputs[0], new_var=x ) block.remove_ops(ops_to_remove) return True @block_context_manager def _fuse_reduce_mean_block(self, block): fusion_occurred = False for op in list(block.operations): if op.enclosing_block is None: continue for b in op.blocks: block_changed = True while block_changed: block_changed = self._fuse_reduce_mean_block(b) if len(op.blocks) > 0: continue # start pattern match if mul op is encountered if op.op_type == "reduce_sum": if self._try_to_transform(op, block): fusion_occurred = True return fusion_occurred