# Copyright (c) 2021, Apple Inc. All rights reserved.
#
# Use of this source code is governed by a BSD-3-clause license that can be
# found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause
import collections
import gc
import os
from typing import Optional, Text, Union
from coremltools import (
_LOWEST_ALLOWED_SPECIFICATION_VERSION_FOR_MILPROGRAM,
_LOWEST_ALLOWED_SPECIFICATION_VERSION_FOR_NEURALNETWORK,
)
from coremltools import ComputeUnit as _ComputeUnit
from coremltools import __version__ as _ct_version
from coremltools._deps import _HAS_TF_1, _HAS_TF_2, _HAS_TORCH
from coremltools.converters._profile_utils import _profile
from coremltools.converters.mil._deployment_compatibility import (
AvailableTarget,
check_deployment_compatibility,
)
from coremltools.converters.mil.converter import mil_convert
from coremltools.converters.mil.input_types import (
ClassifierConfig,
ImageType,
InputType,
TensorType,
)
from coremltools.converters.mil.mil import Program, types
from coremltools.converters.mil.mil.passes.defs.quantization import ComputePrecision as precision
from coremltools.converters.mil.mil.passes.defs.quantization import FP16ComputePrecision
from coremltools.converters.mil.mil.passes.graph_pass import PassOption as _PassOption
from coremltools.converters.mil.mil.passes.pass_pipeline import PassPipeline
from coremltools.models import _METADATA_SOURCE, _METADATA_VERSION
from coremltools.models.utils import _MLPACKAGE_EXTENSION
if _HAS_TF_1:
import tensorflow as tf
from coremltools.converters.mil.frontend.tensorflow.load import TF1Loader
if _HAS_TF_2:
import tensorflow as tf
from coremltools.converters.mil.frontend.tensorflow2.load import TF2Loader
if _HAS_TORCH:
import torch
from coremltools.converters.mil.frontend.torch.load import \
_torchscript_from_model as pytorch_load
[docs]@_profile
def convert(
model,
source="auto",
inputs=None,
outputs=None,
classifier_config=None,
minimum_deployment_target=None,
convert_to=None,
compute_precision=None,
skip_model_load=False,
compute_units=_ComputeUnit.ALL,
package_dir=None,
debug=False,
pass_pipeline: Optional[PassPipeline] = None,
):
"""
Convert a TensorFlow or PyTorch model to the Core ML model format as either
a neural network or an `ML program <https://coremltools.readme.io/docs/ml-programs>`_.
Some parameters and requirements differ for TensorFlow and PyTorch
conversions.
Parameters
----------
model :
TensorFlow 1, TensorFlow 2, or PyTorch model in one of the following
formats:
* TensorFlow versions 1.x
- Frozen `tf.Graph <https://www.tensorflow.org/api_docs/python/tf/Graph>`_
- Frozen graph (``.pb``) file path
- `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras>`_
- `HDF5 <https://keras.io/api/models/model_saving_apis/>`_ file path (``.h5``)
- `SavedModel <https://www.tensorflow.org/guide/saved_model>`_ directory path
* TensorFlow versions 2.x
- `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras>`_
- `HDF5 file path <https://keras.io/api/models/model_saving_apis/>`_ (``.h5``)
- `SavedModel <https://www.tensorflow.org/guide/saved_model>`_ directory path
- A `concrete function <https://www.tensorflow.org/guide/concrete_function>`_
- A `GraphDef <https://www.tensorflow.org/api_docs/python/tf/compat/v1/GraphDef>`_
* PyTorch
- A `TorchScript <https://pytorch.org/docs/stable/jit.html>`_ object
- Path to a ``.pt`` file
source : str (optional)
One of [``auto``, ``tensorflow``, ``pytorch``, ``milinternal``]. ``auto``
determines the framework automatically for most cases. Raises
``ValueError`` if it fails to determine the source framework.
inputs : list of ``TensorType`` or ``ImageType``
* If you specify ``dtype`` with ``TensorType`` or ``ImageType``, it will
be applied to the input of the converted model. For example, the
following code snippet will produce a Core ML model with float 16 typed
inputs.
.. sourcecode:: python
import coremltools as ct
mlmodel = ct.convert(
keras_model,
inputs=[ct.TensorType(dtype=np.float16)],
minimum_deployment_target=ct.target.macOS13,
)
* The following code snippet will produce a Core ML model with the
``GRAYSCALE_FLOAT16`` input image type:
.. sourcecode:: python
import coremltools as ct
# H : image height, W: image width
mlmodel = ct.convert(
torch_model,
inputs=[
ct.ImageType(shape=(1, 1, H, W), color_layout=ct.colorlayout.GRAYSCALE_FLOAT16)
],
minimum_deployment_target=ct.target.macOS13,
)
* TensorFlow 1 and 2 (including tf.keras):
- The ``inputs`` parameter is optional. If not provided, the inputs
are placeholder nodes in the model (if the model is a frozen graph)
or function inputs (if the model is a ``tf.function``).
- If ``inputs`` is provided, it must be a flat list.
- The ``inputs`` must correspond to all or some of the placeholder nodes
in the TF model.
- If ``name`` is specified with ``TensorType`` and ``ImageType``, it
must correspond to a placeholder op in the TF graph. The input names
in the converted Core ML model can later be modifed using the
``ct.utils.rename_feature`` API.
- If ``dtype`` is not specified, it defaults to the ``dtype`` of the
inputs in the TF model.
* PyTorch:
- The ``inputs`` parameter is required.
- Number of elements in ``inputs`` must match the number of inputs
of the PyTorch model.
- ``inputs`` may be a nested list or tuple.
- ``TensorType`` and ``ImageType`` must have the ``shape`` specified.
- If the ``name`` argument is specified with ``TensorType`` or
``ImageType``, the converted Core ML model will have inputs with
the same name.
- If ``dtype`` is missing, it defaults to float 32.
outputs : list of ``TensorType`` or ``ImageType`` (optional)
* If you specify ``dtype`` with ``TensorType`` or ``ImageType``,
it will be applied to the output of the converted model. For example,
to produce float 16 typed inputs and outputs:
.. sourcecode:: python
import coremltools as ct
mlmodel = ct.convert(
keras_model,
inputs=[ct.TensorType(dtype=np.float16)],
outputs=[ct.TensorType(dtype=np.float16)],
minimum_deployment_target=ct.target.macOS13,
)
* To produce image inputs and outputs:
.. sourcecode:: python
import coremltools as ct
# H: image height, W: image width
mlmodel = ct.convert(
torch_model,
inputs=[ct.ImageType(shape=(1, 3, H, W), color_layout=ct.colorlayout.RGB)],
outputs=[ct.ImageType(color_layout=ct.colorlayout.RGB)],
minimum_deployment_target=ct.target.macOS13,
)
* TensorFlow 1 and 2 (including tf.keras):
- If ``outputs`` is not specified, the converter infers outputs from
the sink nodes in the graph.
- If specified, the ``name`` with ``TensorType`` or ``ImageType``
must correspond to a node in the TF graph. In this case, the model
will be converted up to that node.
* PyTorch:
- If specified, the length of the list must match the number of
outputs returned by the PyTorch model.
- If ``name`` is specified, it is applied to the output names of the
converted Core ML model.
classifier_config : ClassifierConfig class (optional)
The configuration if the MLModel is intended to be a classifier.
minimum_deployment_target : coremltools.target enumeration (optional)
A member of the ``coremltools.target`` enum.
The value of this parameter determines the type of the model
representation produced by the converter. To learn about the differences
between neural networks and ML programs, see
`ML Programs <https://coremltools.readme.io/docs/ml-programs>`_.
- The converter produces a neural network (``neuralnetwork``) if:
::
minimum_deployment_target <= coremltools.target.iOS14/
coremltools.target.macOS11/
coremltools.target.watchOS7/
coremltools.target.tvOS14:
- The converter produces an ML program (``mlprogram``) if:
::
minimum_deployment_target >= coremltools.target.iOS15/
coremltools.target.macOS12/
coremltools.target.watchOS8/
coremltools.target.tvOS15:
- If neither the ``minimum_deployment_target`` nor the ``convert_to``
parameter is specified, the converter produces the neural network
model type with as minimum of a deployment target as possible.
- If this parameter is specified and ``convert_to`` is also specified,
they must be compatible. The following are examples of invalid values:
::
# Invalid:
convert_to="neuralnetwork", minimum_deployment_target=coremltools.target.iOS15
# Invalid:
convert_to="mlprogram", minimum_deployment_target=coremltools.target.iOS14
convert_to : str (optional)
Must be one of [``'neuralnetwork'``, ``'mlprogram'``, ``'milinternal'``].
The value of this parameter determines the type of the model
representation produced by the converter. To learn about the
differences between neural networks and ML programs, see
`ML Programs <https://coremltools.readme.io/docs/ml-programs>`_.
- ``'neuralnetwork'``: Returns an MLModel (``coremltools.models.MLModel``)
containing a NeuralNetwork proto, which is the original Core ML format.
The model saved from this returned object is executable either on
iOS13/macOS10.15/watchOS6/tvOS13 and newer, or on
iOS14/macOS11/watchOS7/tvOS14 and newer, depending on the layers used
in the model.
- ``'mlprogram'`` : Returns an MLModel (``coremltools.models.MLModel``)
containing a MILSpec.Program proto, which is the Core ML program format.
The model saved from this returned object is executable on iOS15,
macOS12, watchOS8, and tvOS15.
- ``'milinternal'``: Returns an MIL program object
(``coremltools.converters.mil.Program``). An MIL program is primarily
used for debugging and inspection. It can be converted to an MLModel for
execution by using one of the following:
::
ct.convert(mil_program, convert_to="neuralnetwork")
ct.convert(mil_program, convert_to="mlprogram")
- If neither the ``minimum_deployment_target`` nor the ``convert_to``
parameter is specified, the converter produces the neural network
model type with as minimum of a deployment target as possible.
compute_precision : coremltools.precision enumeration or ct.transform.FP16ComputePrecision() (optional)
Use this argument to control the storage precision of the tensors in the
ML program. Must be one of the following.
- ``coremltools.precision.FLOAT16`` enum: The following transform is
applied to produce a float 16 program; that is, a program in which all
the intermediate float tensors are of type float 16 (for ops that
support that type).
::
coremltools.transform.FP16ComputePrecision(op_selector=
lambda op:True)
The above transform iterates through all the ops, looking at each op's
inputs and outputs. If they are of type float 32, ``cast``
ops are injected to convert those tensors (also known as `vars`) to
type float 16.
- ``coremltools.precision.FLOAT32`` enum: No transform is applied.
The original float32 tensor dtype in the source model is preserved.
Opt into this option if the default converted model is displaying
numerical precision issues.
- ``coremltools.transform.FP16ComputePrecision(op_selector=...)``
Use this option to control which tensors are cast to float 16.
Before casting the inputs/outputs of any op from float32 to float 16,
the op_selector function is invoked on the op object. This function
must return a boolean value. By default it returns ``True`` for every op,
but you can customize this.
For example:
::
coremltools.transform.FP16ComputePrecision(op_selector=
lambda op: op.op_type != "linear")
The above casts all the float32 tensors to be float 16, except
the input/output tensors to any ``linear`` op. See more examples
below.
- ``None``: The default
- When ``convert_to="mlprogram"``, the ``compute_precision`` parameter
defaults to ``coremltools.precision.FLOAT16``.
- When ``convert_to="neuralnetwork"``, the ``compute_precision`` parameter
needs to be ``None`` and has no meaning.
- For example, you can customize the float 16 precision transform to prevent
casting all the ``real_div`` ops in the program to float 16
precision:
.. sourcecode:: python
def skip_real_div_ops(op):
if op.op_type == "real_div":
return False
return True
model = ct.convert(
source_model,
compute_precision=ct.transform.FP16ComputePrecision(op_selector=skip_real_div_ops),
minimum_deployment_target=ct.target.iOS15,
)
skip_model_load : bool
Set to ``True`` to prevent coremltools from calling into the Core ML framework
to compile and load the model, post-conversion. In that case, the returned
model object cannot be used to make a prediction, but can be used to save
with ``model.save()``. This flag may be used to convert to a newer model type
on an older Mac, which may raise a runtime warning if done without
turning this flag on.
Example: Use this flag to suppress a runtime warning when converting to an
ML program model on macOS 11, since an ML program can only be compiled and
loaded from macOS12+.
Defaults to ``False``.
compute_units: coremltools.ComputeUnit
An enum with the following possible values.
- ``coremltools.ComputeUnit.ALL``: Use all compute units available, including the
neural engine.
- ``coremltools.ComputeUnit.CPU_ONLY``: Limit the model to only use the CPU.
- ``coremltools.ComputeUnit.CPU_AND_GPU``: Use both the CPU and GPU, but not the
neural engine.
- ``coremltools.ComputeUnit.CPU_AND_NE``: Use both the CPU and neural engine, but
not the GPU. Available only for macOS >= 13.0.
package_dir : str
Post conversion, the model is saved at a temporary location and
loaded to form the MLModel object ready for prediction.
* If ``package_dir`` is provided, model will be saved at this location
rather than creating a temporary directory.
* If not ``None``, this must be a path to a directory with the extension
``.mlpackage``.
debug : bool
This flag should generally be ``False`` except for debugging purposes.
Setting this flag to ``True`` produces the following behavior:
- For Torch conversion, it will print the list of supported and
unsupported ops found in the model if conversion fails due to an
unsupported op.
- For Tensorflow conversion, it will cause to display extra logging
and visualizations.
pass_pipeline : PassPipeline
Manage graph passes. You can control which graph passes to run and the order of the
graph passes. You can also specify options for each pass. See the details in the docstring of
PassPipeline (``coremltools/converters/mil/mil/passes/pass_pipeline.py``).
* To avoid fusing the ``conv`` and ``batchnorm`` ops, skip the corresponding pass
as shown in the following example:
.. sourcecode:: python
pipeline = ct.PassPipeline()
pipeline.remove_passes({"common::fuse_conv_batchnorm"})
ct.convert(model, pass_pipeline=pipeline)
* To avoid folding too-large ``const`` ops that lead to a large model, set pass option
as shown in the following example:
.. sourcecode:: python
pipeline = ct.PassPipeline()
pipeline.set_options("common::const_elimination", {"skip_const_by_size": "1e6"})
ct.convert(model, pass_pipeline=pipeline)
Returns
-------
model : ``coremltools.models.MLModel`` or ``coremltools.converters.mil.Program``
A Core ML MLModel object or MIL program object (see ``convert_to``).
Examples
--------
TensorFlow 1, 2 (``model`` is a frozen graph):
>>> with tf.Graph().as_default() as graph:
>>> x = tf.placeholder(tf.float32, shape=(1, 2, 3), name="input")
>>> y = tf.nn.relu(x, name="output")
Automatically infer inputs and outputs:
>>> mlmodel = ct.convert(graph)
>>> test_input = np.random.rand(1, 2, 3) - 0.5
>>> results = mlmodel.predict({"input": test_input})
>>> print(results['output'])
TensorFlow 2 (``model`` is a tf.Keras model path):
>>> x = tf.keras.Input(shape=(32,), name='input')
>>> y = tf.keras.layers.Dense(16, activation='softmax')(x)
>>> keras_model = tf.keras.Model(x, y)
>>> keras_model.save(h5_path)
>>> mlmodel = ct.convert(h5_path)
>>> test_input = np.random.rand(2, 32)
>>> results = mlmodel.predict({'input': test_input})
>>> print(results['Identity'])
PyTorch:
>>> model = torchvision.models.mobilenet_v2()
>>> model.eval()
>>> example_input = torch.rand(1, 3, 256, 256)
>>> traced_model = torch.jit.trace(model, example_input)
>>> input = ct.TensorType(name='input_name', shape=(1, 3, 256, 256))
>>> mlmodel = ct.convert(traced_model, inputs=[input])
>>> results = mlmodel.predict({"input": example_input.numpy()})
>>> print(results['1651']) # 1651 is the node name given by PyTorch's JIT
See `Conversion Options <https://coremltools.readme.io/docs/neural-network-conversion>`_ for
more advanced options.
"""
_check_deployment_target(minimum_deployment_target)
outputs_as_strings, outputs_as_tensor_or_image_types = _validate_outputs_argument(outputs)
exact_source = _determine_source(model, source,
outputs_as_strings,
outputs_as_tensor_or_image_types,
outputs)
exact_target = _determine_target(convert_to, minimum_deployment_target)
_validate_conversion_arguments(model, exact_source, inputs, outputs_as_tensor_or_image_types,
classifier_config, compute_precision,
exact_target, minimum_deployment_target)
if pass_pipeline is None:
pass_pipeline = PassPipeline()
if not _need_fp16_cast_pass(compute_precision, exact_target):
pass_pipeline.remove_passes({"common::add_fp16_cast"})
if isinstance(compute_precision, FP16ComputePrecision):
# For backward compatibility with the `op_selector` param in FP16ComputePrecision.
pass_pipeline._pass_options["common::add_fp16_cast"] = [
_PassOption(option_name="op_selector", option_val=compute_precision.op_selector)
]
if package_dir is not None:
_, ext = os.path.splitext(package_dir)
if ext != _MLPACKAGE_EXTENSION:
raise ValueError(
f"`package_dir` must have extension {_MLPACKAGE_EXTENSION} (not {ext})"
)
specification_version = minimum_deployment_target.value if minimum_deployment_target is not None else None
if specification_version is None:
specification_version = _set_default_specification_version(exact_target)
mlmodel = mil_convert(
model,
convert_from=exact_source,
convert_to=exact_target,
inputs=inputs,
outputs=outputs_as_tensor_or_image_types, # None or list[ct.ImageType/ct.TensorType]
classifier_config=classifier_config,
skip_model_load=skip_model_load,
compute_units=compute_units,
package_dir=package_dir,
debug=debug,
specification_version=specification_version,
main_pipeline=pass_pipeline,
)
if exact_target == 'milinternal':
return mlmodel # Returns the MIL program
if minimum_deployment_target is not None:
check_deployment_compatibility(
spec=mlmodel.get_spec(),
representation=exact_target,
deployment_target=minimum_deployment_target,
)
gc.collect()
mlmodel = _record_build_metadata(mlmodel, exact_source)
return mlmodel
def _need_fp16_cast_pass(
compute_precision: Optional[Union[precision, FP16ComputePrecision]], convert_to: Text
) -> bool:
if convert_to not in ("mlprogram", "neuralnetwork", "milinternal", "milpython"):
raise NotImplementedError(f"Backend converter {convert_to} not implemented")
if compute_precision is None:
return convert_to != "neuralnetwork"
elif compute_precision == precision.FLOAT32:
return False
elif compute_precision == precision.FLOAT16 or isinstance(
compute_precision, FP16ComputePrecision
):
return True
else:
raise ValueError(f"Invalid value of the argument 'compute_precision': {compute_precision}")
def _set_default_specification_version(target):
if target == "neuralnetwork":
return _LOWEST_ALLOWED_SPECIFICATION_VERSION_FOR_NEURALNETWORK
elif target == "mlprogram":
return _LOWEST_ALLOWED_SPECIFICATION_VERSION_FOR_MILPROGRAM
elif target in ("milinternal", "milpython"):
return None
else:
raise NotImplementedError("Backend converter {} not implemented".format(target))
def _check_deployment_target(minimum_deployment_target):
if minimum_deployment_target is not None and not isinstance(
minimum_deployment_target, AvailableTarget
):
msg = (
"Unrecognized value of argument 'minimum_deployment_target': {}. "
"It needs to be a member of 'coremltools.target' enumeration. "
"For example, coremltools.target.iOS13"
)
raise TypeError(msg.format(minimum_deployment_target))
def _validate_outputs_argument(outputs):
"""
- validate properties that the "outputs" argument must satisfy, for instance, it should either be a list
of ct.ImageType/ct.TensorType or a list of strings, etc.
- return : tuple
- (outputs_as_strings, outputs_as_tensor_or_image_types)
- outputs_as_strings: list[str]
- outputs_as_tensor_or_image_types : list[ct.ImageType] or list[ct.TensorType]
"""
if outputs is None:
return None, None
else:
if not isinstance(outputs, list):
raise ValueError('"outputs" must be of type list')
if len(outputs) == 0:
return None, None
if not all(map(lambda t: isinstance(t, (ImageType, str, TensorType)), outputs)):
raise ValueError('Elements in "outputs" must be ct.TensorType or ct.ImageType or str')
msg_inconsistent_types = 'all elements of "outputs" must either be of type str ' \
'or of types ct.ImageType/ct.TensorType'
if isinstance(outputs[0], str):
# if one of the elements is a string, all elements must be strings
if not all([isinstance(t, str) for t in outputs]):
raise ValueError(msg_inconsistent_types)
return outputs, [TensorType(name=name) for name in outputs]
if isinstance(outputs[0], InputType):
if not all([isinstance(t, TensorType) or isinstance(t, ImageType) for t in outputs]):
raise ValueError(msg_inconsistent_types)
if any([t.shape is not None for t in outputs]):
msg = "The 'shape' argument must not be specified for the outputs, since it is " \
"automatically inferred from the input shapes and the ops in the model"
raise ValueError(msg)
for out_ in outputs:
if isinstance(out_, TensorType):
if out_.default_value is not None:
raise ValueError(
"The 'default_value' argument must not be specified for the outputs"
)
if isinstance(out_, ImageType):
if out_.scale != 1.0:
raise ValueError("'scale' must be 1.0 for a output of ImageType")
if not (out_.bias is None or out_.bias == 0.0 or out_.bias == [0.0, 0.0, 0.0]):
raise ValueError("'bias' must be None or 0 for an output of ImageType")
if out_.channel_first is not None:
raise ValueError("'channel_first' must be None for an output of ImageType")
output_names = [t.name for t in outputs]
# verify that either all of the entries in output_names is "None" or none of them is "None"
msg_consistent_names = 'Either none or all the outputs must have the "name" argument specified'
if output_names[0] is None and not all([name is None for name in output_names]):
raise ValueError(msg_consistent_names)
if output_names[0] is not None and not all([name is not None for name in output_names]):
raise ValueError(msg_consistent_names)
if output_names[0] is not None:
if len(set(output_names)) != len(output_names):
raise ValueError("Duplicate names provided in 'outputs'")
if output_names[0] is None:
return None, outputs
else:
return output_names, outputs
def _validate_conversion_arguments(model,
exact_source,
inputs,
outputs,
classifier_config,
compute_precision,
convert_to,
minimum_deployment_target,
):
"""
Validate and process model, inputs, classifier_config based on
`exact_source` (which cannot be `auto`)
"""
def raise_if_duplicated(input_list):
# Detect duplicated inputs
input_names = [t.name for t in input_list if t.name is not None]
dups = [
item
for item, count in collections.Counter(input_names).items()
if count > 1
]
if len(dups) > 0:
raise ValueError("Duplicated inputs: {}".format(dups))
def _flatten_list(_inputs):
ret = []
for _input in _inputs:
if isinstance(_input, (list, tuple)):
ret.extend(_flatten_list(_input))
elif isinstance(_input, InputType):
ret.append(_input)
else:
raise ValueError(
"Unknown type {} for flattening into InputType.".format(
type(_input)
)
)
return ret
flat_inputs = None
if inputs is not None:
if not isinstance(inputs, list):
raise ValueError("`inputs` must be of type list")
# get flattened inputs
flat_inputs = _flatten_list(inputs)
for t in flat_inputs:
if not isinstance(t, InputType):
raise ValueError("inputs must be a list of type ct.TensorType or ct.ImageType")
if t.dtype == types.fp16:
if not (
minimum_deployment_target is not None
and minimum_deployment_target >= AvailableTarget.iOS16
):
raise TypeError(
"float16 dtype for inputs is only supported for deployment "
"target >= iOS16/macOS13/watchOS9/tvOS16"
)
if outputs is not None:
for t in outputs:
if t.dtype == types.fp16:
if not (
minimum_deployment_target is not None
and minimum_deployment_target >= AvailableTarget.iOS16
):
raise TypeError(
"float16 dtype for outputs is only supported for deployment "
"target >= iOS16/macOS13/watchOS9/tvOS16"
)
if classifier_config is not None:
if not isinstance(classifier_config, ClassifierConfig):
raise ValueError("`classifier_config` must be of type ClassifierConfig")
if convert_to.lower() == "neuralnetwork" and compute_precision is not None:
raise ValueError(
"compute_precision is only supported for mlprogram target and must be "
"None if target=='neuralnetwork'. Note that target may be implicitly set "
"depending on the minimum_deployment_target. See "
"minimum_deployment_target for more details."
)
if compute_precision is not None:
if compute_precision not in [precision.FLOAT32, precision.FLOAT16]:
if not isinstance(compute_precision, FP16ComputePrecision):
raise ValueError(
"'compute_precision' must be either coremltools.precision.FLOAT32 "
"or coremltools.precision.FLOAT16 or of type "
"coremltools.transform.FP16ComputePrecision()"
)
if exact_source in {"tensorflow", "tensorflow2"}:
if exact_source == "tensorflow" and not _HAS_TF_1:
raise ValueError(
'Converter was called with source="tensorflow", but missing ' "tensorflow package"
)
if inputs is not None:
raise_if_duplicated(inputs)
if inputs is not None and not all([isinstance(_input, InputType) for _input in inputs]):
raise ValueError("Input should be a list of TensorType or ImageType")
elif exact_source == "pytorch":
if inputs is None:
raise ValueError('Expected argument for pytorch "inputs" not provided')
raise_if_duplicated(flat_inputs)
if inputs is not None and not all(
[isinstance(_input, InputType) for _input in flat_inputs]
):
raise ValueError(
"Input should be a list/tuple (or nested lists/tuples) of TensorType or ImageType"
)
elif exact_source == "milinternal":
if not isinstance(model, Program):
raise ValueError(
"Converter was asked to convert MIL input, but input is not a MIL " "program!"
)
def _determine_source(model, source,
output_names,
outputs_as_tensor_or_image_types,
output_argument_as_specified_by_user):
"""
Infer source (which can be auto) to the precise framework.
"""
source = source.lower()
if source not in {"auto", "tensorflow", "pytorch", "milinternal"}:
raise ValueError(
f'Unrecognized value of argument "source": {source}. It must be one of ["auto", "tensorflow", "pytorch"].'
)
# Determine tensorflow version
if source == "tensorflow" and _HAS_TF_2:
return "tensorflow2"
if source != 'auto':
return source
# Determine `auto` source
if source == "auto" and _HAS_TF_1:
try:
loader = TF1Loader(model, outputs=outputs_as_tensor_or_image_types)
loader._graph_def_from_model(output_names=output_names)
return "tensorflow"
except:
pass
if source == "auto" and _HAS_TF_2:
try:
loader = TF2Loader(model, outputs=outputs_as_tensor_or_image_types)
loader._graph_def_from_model(output_names=output_names)
return "tensorflow2"
except:
pass
if source == "auto" and _HAS_TORCH:
is_torch_load_successful = False
try:
pytorch_load(model)
is_torch_load_successful = True
except:
pass
if is_torch_load_successful:
# validate that the outputs passed by the user are of type ImageType/TensorType
if output_argument_as_specified_by_user is not None and not all(
[
isinstance(t, TensorType) or isinstance(t, ImageType)
for t in output_argument_as_specified_by_user
]
):
raise ValueError(
'"outputs" must be a list of type ct.TensorType or ct.ImageType '
"for pytorch conversion"
)
return "pytorch"
if source == "auto" and isinstance(model, Program):
return "milinternal"
msg = (
"Unable to determine the type of the model, i.e. the source framework. "
'Please provide the value of argument "source", from one of '
'["tensorflow", "pytorch", "milinternal"]. Note that model conversion requires the '
"source package that generates the model. Please make sure you have "
"the appropriate version of source package installed. E.g., if you're "
"converting model originally trained with TensorFlow 1.14, make sure "
"you have `tensorflow==1.14` installed."
)
raise ValueError(msg)
def _determine_target(convert_to, minimum_deployment_target):
"""
Infer the precise backend target, which could be one of ``milinternal``, ``neuralnetwork`` or ``mlprogram``
"""
if minimum_deployment_target is not None:
if convert_to == "mlprogram" and minimum_deployment_target < AvailableTarget.iOS15:
raise ValueError(
f"When 'convert_to' is {convert_to}, the minimum deployment target "
f"must be at least iOS15/macOS12/watchOS8/tvOS15"
)
if convert_to == "neuralnetwork" and minimum_deployment_target >= AvailableTarget.iOS15:
raise ValueError(
f"If minimum deployment target is iOS15/macOS12/watchOS8/tvOS15 or "
f"higher, then 'convert_to' cannot be {convert_to}. It must be "
f"'mlprogram'"
)
if convert_to is not None:
return convert_to
else:
if minimum_deployment_target is None:
return "neuralnetwork"
elif minimum_deployment_target <= AvailableTarget.iOS14:
return "neuralnetwork"
else:
return "mlprogram"
def _get_metadata_from_mlmodel(mlmodel):
# Copy from source mlmodel if metadata info exists
src_pkg_version = mlmodel.user_defined_metadata[_METADATA_SOURCE]
coremltools_version = mlmodel.user_defined_metadata[_METADATA_VERSION]
src_pkg_version_list = src_pkg_version.split("==")
if len(src_pkg_version_list) == 0:
src_pkg, pkg_ver = None, None
elif len(src_pkg_version_list) == 1:
src_pkg, pkg_ver = src_pkg_version_list[0], ""
elif len(src_pkg_version_list) == 2:
src_pkg, pkg_ver = src_pkg_version_list
else:
raise AssertionError("Unable to parse src_pkg_version")
build_info = {
"coremltools-version": _ct_version if not coremltools_version else coremltools_version
}
if src_pkg is not None and pkg_ver is not None:
build_info['coremltools-component-' + src_pkg] = str(pkg_ver)
return build_info
def _record_build_metadata(mlmodel, exact_source):
# recording metadata: coremltools version, source framework and version
if exact_source in {"tensorflow", "tensorflow2"} and (_HAS_TF_1 or _HAS_TF_2):
src_pkg_version = "tensorflow=={0}".format(tf.__version__)
elif exact_source == "pytorch" and _HAS_TORCH:
src_pkg_version = "torch=={0}".format(torch.__version__)
elif exact_source == 'milinternal':
src_pkg_version = "milinternal"
else:
raise ValueError('Unsupported source {}'.format(exact_source))
mlmodel.user_defined_metadata[_METADATA_SOURCE] = src_pkg_version
mlmodel.user_defined_metadata[_METADATA_VERSION] = _ct_version
build_info = _get_metadata_from_mlmodel(mlmodel)
mlmodel._set_build_info_mil_attributes(build_info)
return mlmodel