neural_network.builder
Neural network builder class to construct Core ML models.
- class coremltools.models.neural_network.builder.NeuralNetworkBuilder(input_features=None, output_features=None, mode=None, spec=None, nn_spec=None, disable_rank5_shape_mapping=False, training_features=None, use_float_arraytype=False)[source]
Neural network builder class to construct Core ML models.
The NeuralNetworkBuilder constructs a Core ML neural network specification layer by layer. The layers should be added in such an order that the inputs to each layer (referred to as blobs of each layer) have been previously defined. The builder can also set preprocessing steps to handle specialized input formats (such as images), and set class labels for neural network classifiers.
Refer to the protobuf messages in the specification (NeuralNetwork.proto) for more details.
Examples
from coremltools.models.neural_network import datatypes, NeuralNetworkBuilder from coremltools.models.utils import save_spec # Create a neural network binary classifier that classifies # 3-dimensional data points # Specify input and output dimensions >>> input_dim = (3,) >>> output_dim = (2,) # Specify input and output features >>> input_features = [('data', datatypes.Array(*input_dim))] >>> output_features = [('probs', datatypes.Array(*output_dim))] # Build a simple neural network with 1 inner product layer >>> builder = NeuralNetworkBuilder(input_features, output_features) >>> builder.add_inner_product(name='ip_layer', W=weights, b=bias, input_channels=3, output_channels=2, ... has_bias=True, input_name='data', output_name='probs') # save the spec by the builder >>> save_spec(builder.spec, 'network.mlmodel')
- __init__(input_features=None, output_features=None, mode=None, spec=None, nn_spec=None, disable_rank5_shape_mapping=False, training_features=None, use_float_arraytype=False)[source]
Construct a NeuralNetworkBuilder object to build an MLModel specification with a model interface, or a NeuralNetwork protobuf message, either from scratch or using an existing specification.
- Parameters:
- input_features: [(str, datatypes.Array)] or None
List of input feature of the network. Each feature is a
(name, array)
tuple, wherename
is the name of the feature, andarray
is adatatype.Array
object describing the feature type.When
spec
isNone
(building from scratch),input_features
must not beNone
.
- output_features: [(str, datatypes.Array or None)] or None
List of output feature of the network. Each feature is a
(name, array)
tuple, wherename
is the name of the feature, andarray
is adatatypes.Array
object describing the feature type.The
array
can beNone
if not known.When
spec
isNone
(building from scratch),output_features
must not beNone
.
- mode: str (‘classifier’, ‘regressor’ or None)
Mode (one of
'classifier'
,'regressor'
, orNone
).When
mode = 'classifier'
, a NeuralNetworkClassifier spec will be constructed. Whenmode = 'regressor'
, a NeuralNetworkRegressor spec will be constructed.- disable_rank5_shape_mapping: bool
Only applicable for neural networks.
If True, inputs are no longer forced to map to rank 5 tensors (rank is equal to the length of the shape of the tensor). Instead, for multi-array inputs
"EXACT_ARRAY_MAPPING"
mapping is used, whereas for image inputs"RANK4_IMAGE_MAPPING"
is used. For details, see description of enumsNeuralNetworkMultiArrayShapeMapping
andNeuralNetworkImageShapeMapping
in NeuralNetwork.proto.When
spec
is notNone
, this argument will be ignored.- spec: None or coremltools.proto.Model_pb2
If
None
, a new MLModel spec will be created by the builder with input and output features.Otherwise, the builder will continue to build on
spec
. This is useful when the MLModel is built incrementally.- nn_spec: None or coremltools.proto.NeuralNetwork_pb2
If
None
, a new, empty NeuralNetwork proto will be created for spec.If
nn_spec
is notNone
andspec
isNone
, the builder will build a NeuralNetwork spec without wrapping it within an MLModel. This is useful to create nested NeuralNetworks for models with control flow operations.- use_float_arraytype: bool
If true, the datatype of input/output multiarrays is set to Float32 instead of double.
See also
Examples
# Construct a builder that builds a neural network classifier with a 299 x 299 x 3 # dimensional input and 1000 dimensional output >>> input_features = [('data', datatypes.Array((299, 299, 3)))] >>> output_features = [('probs', datatypes.Array((1000,)))] >>> builder = NeuralNetworkBuilder(input_features, output_features, mode='classifier')
- add_acos(name, input_name, output_name)[source]
Add an acos layer to the model that computes element-wise arc-cosine for the input tensor. Refer to the
AcosLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_acosh(name, input_name, output_name)[source]
Add an acosh layer to the model that computes element-wise inverse hyperbolic cosine for the input tensor. Refer to the
AcoshLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_activation(name, non_linearity, input_name, output_name, params=None, input_rank=None, input_shape=None, output_rank=None, output_shape=None)[source]
Add an activation layer to the model. Refer to the specification (NeuralNetwork.proto) for more details.
- Parameters:
- name: str
The name of this layer.
- non_linearity: str
The
non_linearity
(activation) function of this layer. It can be one of the following:'RELU'
: Rectified Linear Unit (ReLU) function.'SIGMOID'
: sigmoid function.'TANH'
: tanh function.'SCALED_TANH'
: scaled tanh function, defined as:f(x) = alpha * tanh(beta * x)
where
alpha
andbeta
are constant scalars.'SOFTPLUS'
: softplus function.'SOFTSIGN'
: softsign function.'SIGMOID_HARD'
: hard sigmoid function, defined as:f(x) = min(max(alpha * x + beta, -1), 1)
where
alpha
andbeta
are constant scalars.'LEAKYRELU'
: leaky relu function, defined as:f(x) = (x >= 0) * x + (x < 0) * alpha * x
where
alpha
is a constant scalar.'PRELU'
: Parametric ReLU function, defined as:f(x) = (x >= 0) * x + (x < 0) * alpha * x
where
alpha
is a multi-dimensional array of same size asx
.'ELU'
: Exponential linear unit function, defined as:f(x) = (x >= 0) * x + (x < 0) * (alpha * exp(x) - 1)
where
alpha
is a constant scalar.'PARAMETRICSOFTPLUS'
: Parametric softplus function, defined as:f(x) = alpha * log(1 + exp(beta * x))
where
alpha
andbeta
are two multi-dimensional arrays of same size asx
.'THRESHOLDEDRELU'
: Thresholded ReLU function, defined as:f(x) = (x >= alpha) * x
where
alpha
is a constant scalar.'LINEAR'
: linear function.f(x) = alpha * x + beta
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- params: list of float or numpy.array
Parameters for the activation, depending on non_linearity.
When
non_linearity
is one of ['RELU'
,'SIGMOID'
,'TANH'
,'SCALED_TANH'
,'SOFTPLUS'
,'SOFTSIGN'
], params is ignored.When
non_linearity
is one of ['SCALED_TANH'
,'SIGMOID_HARD'
,'LINEAR'
], param is a list of 2 floats[alpha, beta]
.When
non_linearity
is one of ['LEAKYRELU'
,'ELU'
,'THRESHOLDEDRELU'
], param is a list of 1 float[alpha]
.When
non_linearity
is'PRELU'
, param is a list of 1 numpy array[alpha]
. The shape ofalpha
is(C,)
, whereC
is either the number of input channels or 1. WhenC = 1
, samealpha
is applied to all channels.When
non_linearity
is'PARAMETRICSOFTPLUS'
, param is a list of 2 numpy arrays[alpha, beta]
. The shape ofalpha
and beta is(C, )
, whereC
is either the number of input channels or 1. WhenC = 1
, samealpha
andbeta
are applied to all channels.
See also
- add_add_broadcastable(name, input_names, output_name)[source]
Add an add_broadcastable layer to the model that performs element-wise addition operation with broadcast support. Refer to the
AddBroadcastableLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_argmax(name, input_name, output_name, axis, keepdims=True)[source]
Add an argmax layer to the model that returns the indices of the maximum value along a specified axis in the input tensor. Refer to the
ArgMaxLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axis: int
axis along which the argmax is computed. Negative indexing is supported.
- keepdims: bool, optional
if true, output rank is same as input rank, default: true.
See also
- add_argmin(name, input_name, output_name, axis, keepdims=True)[source]
Add an argmin layer to the model that returns the indices of the minimum value along a specified axis in the input tensor. Refer to the
ArgMinLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axis: int
axis along which the argmin is computed. Negative indexing is supported.
- keepdims: bool, optional
if true, output rank is same as input rank, default: true.
See also
- add_argsort(name, input_name, output_name, axis=0, descending=False)[source]
Add an argsort layer to the model. Refer to the
ArgsortLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axis: int, optional
axis along which to compute the sorting indices
- descending: bool, optional
order of sorting
See also
- add_asin(name, input_name, output_name)[source]
Add an asin layer to the model that computes element-wise arc-sine for the input tensor. Refer to the
AsinLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_asinh(name, input_name, output_name)[source]
Add an asinh layer to the model that computes element-wise inverse hyperbolic sine for the input tensor. Refer to the
AsinhLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_atan(name, input_name, output_name)[source]
Add an atan layer to the model that computes element-wise arc-tangent for the input tensor. Refer to the
AtanLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_atanh(name, input_name, output_name)[source]
Add an atanh layer to the model that computes element-wise inverse hyperbolic tangent for the input tensor. Refer to the
AtanhLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_batched_mat_mul(name, input_names, output_name, transpose_a=False, transpose_b=False, weight_matrix_rows=0, weight_matrix_columns=0, W=None, bias=None, int_8_dynamic_quantize=False, is_quantized_weight=False, quantization_type='linear', nbits=8, quant_scale=None, quant_bias=None, quant_lut=None)[source]
Add a N-D Batched Matrix Multiplication layer with NumPy-like broadcasting. Refer to the
BatchedMatMulLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- transpose_a: bool, optional
Whether or not to transpose A, default: false.
- transpose_b: bool, optional
Whether or not to transpose B, default: false.
- weight_matrix_rows: int, optional
Must be equal to the last dimension of the input, default: 0.
- weight_matrix_columns: int, optional
Must be equal to the last dimension of the output, default: 0.
- W: float32 numpy.array or bytes(), optional
Weight matrix of shape
(weight_matrix_rows, weight_matrix_columns)
. IfW
is of typebytes()
(quantized to 1-8 bits), other quantization-related arguments must be provided as well (see below).- bias: float32 numpy.array, optional
Bias vector of shape (weight_matrix_columns,).
- Quantization
Quantization arguments, used when
W
is of typebytes()
:- is_quantized_weight: bool, optional
Set it to true when
W
is of typebytes()
, representing quantized weights, default: false.- quantization_type: str, optional
When weights are quantized (that is,
W
is of typebytes()
), this should be either"linear"
or"lut"
, default:"linear"
.- nbits: int, optional
Should be between 1 and 8 (inclusive). Number of bits per weight value, default: 8.
- quant_scale: numpy.array(dtype=numpy.float32), optional
Scale vector to be used with linear quantization. Must be of length either 1 or
weight_matrix_columns
, default:None
.- quant_bias: numpy.array(dtype=numpy.float32), optional
Bias vector to be used with linear quantization. Must be of length either 1 or
weight_matrix_columns
, default:None
.- quant_lut: numpy.array(dtype=numpy.float32), optional
The LUT (look up table) to be used with LUT quantization. Must be of length 2^n bits, default:
None
.- int_8_dynamic_quantize: bool
Whether to quantize and dequantize before and after batched matmul, respectively. Expects byte weights, representing int8 values, if True. See NeuralNetwork.proto for other validation conditions.
See also
- add_batchnorm(name, channels, gamma, beta, mean=None, variance=None, input_name='data', output_name='out', compute_mean_var=False, instance_normalization=False, epsilon=1e-05)[source]
Add a batch normalization layer. Batch normalization operation is defined as:
y = gamma * (x - mean) / sqrt(variance + epsilon) + beta
Refer to the
BatchnormLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- channels: int
Number of channels of the input blob.
- gamma: numpy.array
Values of gamma. Must be numpy array of shape
(channels, )
.- beta: numpy.array
Values of beta. Must be numpy array of shape
(channels, )
.- mean: numpy.array
Means of the input blob on each channel. Must be numpy array of shape
(channels, )
.- variance:
Variances of the input blob on each channel. Must be numpy array of shape
(channels, )
.- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- compute_mean_var: bool
Set to
True
if mean and variance is to be computed from the input data.- instance_normalization: bool
Set compute_mean_var and this to
True
to perform instance normalization. That is, mean and variance are computed from the single input instance.- epsilon: float
Value of epsilon. Defaults to
1e-5
if not specified.
See also
- add_bias(name, b, input_name, output_name, shape_bias=None)[source]
Add a bias layer to the model. Refer to the
BiasLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- b: int or numpy.array
Bias to add to the input.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- shape_bias: list of int
List of ints that specifies the shape of the bias parameter (if present). Can be
[1]
,[C]
,[1,H,W]
, or[C,H,W]
.
See also
- add_bidirlstm(name, W_h, W_x, b, W_h_back, W_x_back, b_back, hidden_size, input_size, input_names, output_names, inner_activation='SIGMOID', cell_state_update_activation='TANH', output_activation='TANH', peep=None, peep_back=None, output_all=False, forget_bias=False, coupled_input_forget_gate=False, cell_clip_threshold=50000.0)[source]
Add a Bi-directional LSTM layer to the model. Refer to the
BiDirectionalLSTMLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- W_h: [numpy.array]
List of recursion weight matrices for the forward layer. The ordering is
[R_i, R_f, R_o, R_z]
, whereR_i
,R_f
,R_o
, andR_z
are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are(hidden_size, hidden_size)
.- W_x: [numpy.array]
List of input weight matrices for the forward layer. The ordering is
[W_i, W_f, W_o, W_z]
, whereW_i
,W_f
,W_o
, andW_z
are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are(hidden_size, input_size)
.- b: [numpy.array]
List of biases for the forward layer. The ordering is
[b_i, b_f, b_o, b_z]
, whereb_i
,b_f
,b_o
, andb_z
are biases at input gate, forget gate, output gate and cell gate. IfNone
, biases are ignored. Otherwise the shapes of the biases are(hidden_size, )
.- W_h_back: [numpy.array]
List of recursion weight matrices for the backward layer. The ordering is
[R_i, R_f, R_o, R_z]
, whereR_i
,R_f
,R_o
, andR_z
are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are(hidden_size, hidden_size)
.- W_x_back: [numpy.array]
List of input weight matrices for the backward layer. The ordering is [W_i, W_f, W_o, W_z]`, where
W_i
,W_f
,W_o
, andW_z
are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are(hidden_size, input_size)
.- b_back: [numpy.array]
List of biases for the backward layer. The ordering is
[b_i, b_f, b_o, b_z]
, whereb_i
,b_f
,b_o
, andb_z
are biases at input gate, forget gate, output gate and cell gate. The shapes of the biases(hidden_size)
.- hidden_size: int
Number of hidden units. This is equal to the number of channels of output shape.
- input_size: int
Number of the number of channels of input shape.
- input_names: list of str
The input blob names of this layer, in the order of
[x, h_input, c_input, h_reverse_input, c_reverse_input]
.- output_names: list of str
The output blob names of this layer, in the order of
[y, h_output, c_output, h_reverse_output, c_reverse_output]
.- inner_activation: str
Inner activation function used at input and forget gate. Can be one of the following options: [
'RELU'
,'TANH'
,'SIGMOID'
,'SCALED_TANH'
,'SIGMOID_HARD'
,'LINEAR'
]. Defaults to'SIGMOID'
.- cell_state_update_activation: str
Cell state update activation function used at the cell state update gate. Can be one of the following options: [
'RELU'
,'TANH'
,'SIGMOID'
,'SCALED_TANH'
,'SIGMOID_HARD'
,'LINEAR'
]. Defaults to'TANH'
.- output_activation: str
Activation function used at the output gate. Can be one of the following options: [
'RELU'
,'TANH'
,'SIGMOID'
,'SCALED_TANH'
,'SIGMOID_HARD'
,'LINEAR'
]. Defaults to'TANH'
.- peep: [numpy.array] or None
List of peephole vectors for the forward layer. The ordering is
[p_i, p_f, p_o]
, wherep_i
,p_f
, andp_o
are peephole vectors at input gate, forget gate, and output gate. The shapes of the peephole vectors are(hidden_size,)
. Defaults toNone
.- peep_back: [numpy.array] or None
List of peephole vectors for the backward layer. The ordering is
[p_i, p_f, p_o]
, wherep_i
,p_f
, andp_o
are peephole vectors at input gate, forget gate, and output gate. The shapes of the peephole vectors are(hidden_size,)
. Defaults toNone
.- output_all: boolean
Whether the LSTM layer should output at every time step. Defaults to
False
.If
False
, the output is the result after the final state update.If
True
, the output is a sequence, containing outputs at all time steps.
- forget_bias: boolean
If
True
, a vector of 1s is added to forget gate bias. Defaults toFalse
.- coupled_input_forget_gate: boolean
If
True
, the input gate and forget gate is coupled. That is, the forget gate is not used. Defaults toFalse
.- cell_clip_threshold: float
The limit on the maximum and minimum values on the cell state. Defaults to 50.0.
See also
- add_branch(name, input_name, if_branch=None, else_branch=None)[source]
Add a branch layer to the model that provides the functionality of branching or an
if-else
block. Refer to theBranchLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- if_branch: NeuralNetwork
Neural network to execute if the absolute value of the input tensor is greater than 1e-6.
- else_branch: NeuralNetwork, optional
Neural network to execute if the absolute value of the input tensor is less than 1e-6.
See also
- add_broadcast_to_dynamic(name, input_names, output_name)[source]
Add a broadcast_to_dynamic layer to the model that broadcasts a tensor to a compatible shape. Refer to the
BroadcastToDynamicLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
See also
- add_broadcast_to_like(name, input_names, output_name)[source]
Add a broadcast_to_like layer to the model that broadcasts a tensor to a compatible shape. Refer to the
BroadcastToLikeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_broadcast_to_static(name, input_name, output_name, output_shape)[source]
Add a broadcast_to_static layer to the model that broadcasts a tensor to a compatible shape. Refer to the
BroadcastToStaticLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- output_shape: list of int or tuple of int
The target shape of the output tensor.
- add_categorical_distribution(name, input_name, output_name, num_samples, is_logits=True, eps=1e-10, temperature=1.0, seed=-1)[source]
Add a categorical_distribution layer to the model that fills the output tensor with random values from categorical distribution. Refer to the
CategoricalDistributionLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- num_samples: int
List of dimensions for the reduce operations.
- is_logits: bool, optional
If true, the input is log probabilities. If false, the input is probabilities, default: True
- eps: float, optional
Epsilon parameter for categorical distribution, default 1e-10.
- temperature: float, optional
Temperature parameter for categorical distribution, default 1.0.
- seed: int, optional
Used to create a random seed for the distribution. default -1 (random).
- add_ceil(name, input_name, output_name)[source]
Add a ceil layer to the model that performs element-wise ceil operation on the input tensor that rounds the value to the smallest integer not less than x. Refer to the
CeilLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_clamped_relu(name, input_name, output_name, alpha=0.0, beta=6.0)[source]
Add a clamped relu layer to the model. Clamped relu formula is f(x) = min((x >= 0 ? x : alpha * x), beta) Refer to the
ClampedReluLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- alpha: float, optional
slope of the output when input is negative, default: 0.0.
- beta: float, optional
Upper bound on the output value, default: 6.0.
See also
- add_clip(name, input_name, output_name, min_value=0.0, max_value=1.0)[source]
Add a clip layer to the model that performs element-wise clip operation. Clip the values in the input tensor to the range [min_value, max_value]. Refer to the
ClipLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- min_value: float, optional
Lower bound / minimum value for clip, default: 0.0.
- max_value: float, optional
Upper bound / maximum value for clip, default: 1.0.
- add_concat_nd(name, input_names, output_name, axis, interleave=False)[source]
Add a concat_nd layer to the model that performs concatenation along the given axis. Refer to the
ConcatNDLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- axis: int
Axis to perform the concat operation on.
- interleavebool
(Only available in Core ML Specification >= 5 (iOS >= 14, macOS >= 11.0) If true, concatenate by interleaving the inputs
- add_constant_pad(name, input_names, output_name, value=0.0, pad_to_given_output_size_mode=False, pad_amounts=[])[source]
Add a constant pad layer. Refer to the
ConstantPaddingLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob name(s) of this layer.
- output_name: str
The output blob name of this layer.
- value: float
value to be used for padding.
- pad_to_given_output_size_mode: bool
if true, pad_amounts are interpreted as output shapes (see example in NeuralNetwork.proto)
- pad_amounts: [int], optional
must be non negative. Amount to pad in each dimension. Length of the list must be twice the input/output rank. Not required if second input is present.
See also
- add_convolution(name, kernel_channels, output_channels, height, width, stride_height, stride_width, border_mode, groups, W, b, has_bias, is_deconv=False, output_shape=None, input_name='data', output_name='out', dilation_factors=[1, 1], padding_top=0, padding_bottom=0, padding_left=0, padding_right=0, same_padding_asymmetry_mode='BOTTOM_RIGHT_HEAVY', **kwargs)[source]
Add a convolution layer to the network. Refer to the
ConvolutionLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- kernel_channels: int
Number of channels for the convolution kernels.
- output_channels: int
Number of filter kernels. This is equal to the number of channels in the output blob.
- height: int
Height of each kernel.
- width: int
Width of each kernel.
- stride_height: int
Stride along the height direction.
- stride_width: int
Stride along the height direction.
- border_mode: str
Option for the padding type and output blob shape. Can be either ‘valid’ or ‘same’.
- groups: int
Number of kernel groups. Input is divided into groups along the channel axis. Each kernel group share the same weights.
- W: numpy.array or bytes() or None
Weight of the convolution kernels.
If
is_deconv
is False,W
should have shape(height, width, kernel_channels, output_channels)
, where:kernel_channel = input_channels / groups
If
is_deconv
is True,W
should have shape(height, width, kernel_channels, output_channels / groups)
, where:kernel_channel = input_channels
If
W
is of typebytes()
(quantized), other quantization related arguments must be provided as well (see below).For Core ML specification version >=4,
W
can beNone
. In this case, the convolution layer takes 2 inputs, where the 1st input represents the input feature map, and the 2nd input represents the weight blob.- b: numpy.array
Biases of the convolution kernels.
b
should have shape(outputChannels, )
.- has_bias: boolean
Whether bias is ignored.
If True, bias is not ignored.
If False, bias is ignored.
- is_deconv: boolean
Whether the convolution layer is performing a convolution or a transposed convolution (deconvolution).
If True, the convolution layer is performing transposed convolution.
If False, the convolution layer is performing regular convolution.
- output_shape: tuple or None
Either
None
or a 2-tuple, specifying the output shape(output_height, output_width)
.Used only when
is_deconv == True
.When
is_deconv == False
, this parameter is ignored.If it is
None
, the output shape is calculated automatically using theborder_mode
.
- input_name: str or list of str
The input blob name(s) of this layer.
- output_name: str
The output blob name of this layer.
- dilation_factors: list of int
Dilation factors across height and width directions. Must be a list of two positive integers. Defaults to
[1, 1]
.- padding_top, padding_bottom, padding_left, padding_right: int
Values of height (top, bottom) and width (left, right) padding to be used if
border_more
is"valid"
.- same_padding_asymmetry_mode: str
Type of asymmetric padding to be used when
border_mode
is'same'
. Can be either'BOTTOM_RIGHT_HEAVY'
or'TOP_LEFT_HEAVY'
.- Quantization
Quantization arguments expected in
kwargs
, whenW
is of typebytes()
.- quantization_type: str
When weights are quantized (that is,
W
is of typebytes()
), this should be either"linear"
or"lut"
.- nbits: int
Should be between 1 and 8 (inclusive). Number of bits per weight value. Only applicable when weights are quantized.
- quant_scale: numpy.array(dtype=numpy.float32)
scale vector to be used with linear quantization. Must be of length either 1 or
output_channels
.- quant_bias: numpy.array(dtype=numpy.float32)
bias vector to be used with linear quantization. Must be of length either 1 or
output_channels
.- quant_lut: numpy.array(dtype=numpy.float32)
the LUT (look up table) to be used with LUT quantization. Must be of length 2^n bits.
- Depthwise convolution
Depthwise convolution is a special case of convolution, in which:
kernel_channels = 1 (== input_channels / groups)
output_channels = channel_multiplier * input_channels
groups = input_channels
W
:[Kernel_height, Kernel_width, 1, channel_multiplier * input_channels]
See also
- add_convolution3d(name, input_channels, output_channels, depth, height, width, W, b, has_bias, groups=1, stride_depth=1, stride_height=1, stride_width=1, dilation_width=1, dilation_height=1, dilation_depth=1, is_deconv=False, output_shape=None, padding_mode='valid', padding_front=0, padding_back=0, padding_top=0, padding_bottom=0, padding_left=0, padding_right=0, input_name='data', output_name='out')[source]
Add a 3 dimensional convolution layer to the network. Refer to the
Convolution3DLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_channels: int
Number of input channels.
- output_channels: int
Number of filter kernels. This is equal to the number of channels in the output blob.
- depth: int
Depth of each kernel.
- height: int
Height of each kernel.
- width: int
Width of each kernel.
- W: numpy.array or bytes()
Weight of the convolution kernels.
W
should have shape:If
deconv
is False:(output_channels, kernel_channels, depth, height, width)
, where:kernel_channels = input_channels / groups
If
deconv
is True:(output_channels / groups, kernel_channels, depth, height, width)
, where:kernel_channels = input_channels
- b: numpy.array
Biases of the convolution kernels.
b
should have shape(outputChannels, )
.- has_bias: boolean
Whether bias is ignored. - If True, bias is not ignored. - If False, bias is ignored.
- groups: int
Number of kernel groups. Input is divided into groups along the channel axis. Each kernel group share the same weights. Defaults to 1.
- stride_depth, stride_height, stride_width: int
Stride along the depth, height, and width directions, respectively. Must all be positive integers. Defaults to 1.
- dilation_depth, dilation_width, dilation_height: int
Dilation factors across depth, height, and width directions. Must all be positive integers. Defaults to 1 in each dimension.
- is_deconv: bool
True if this is Convolution Transpose, otherwise False.
- output_shape: None or Tuple of int
Applicable only for Deconvolution layer.
None
if Convolution. Tuple of length 3 if Convolution Transpose.- padding_mode: str
Option for the padding type and output blob shape. Can be
'custom'
,'valid'
, or'same'
. Defaults to'valid'
. Case-insensitive.- padding_front, padding_back, padding_top, padding_bottom, padding_left, padding_right: int
Values of depth (front, back), height (top, bottom), and width (left, right) padding to be used. Must all be positive integers. All default to 0.
- input_name: str or list of str
The input blob name(s) of this layer.
- output_name: str
The output blob name of this layer.
- Depthwise convolution
Depthwise convolution is a special case of convolution, in which:
kernel_channels = 1
(== input_channels / groups
)output_channels = channel_multiplier * input_channels
groups = input_channels
W
:[Kernel_depth, Kernel_height, Kernel_width, 1, channel_multiplier * input_channels]
See also
- add_copy(name, input_name, output_name)[source]
Add a copy layer to the model that copies its input tensor to the output tensor. Input tensor and output tensor must have distinct names. Refer to the
CopyLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_cos(name, input_name, output_name)[source]
Add a cos layer to the model that computes element-wise cosine for the input tensor. Refer to the
CosLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_cosh(name, input_name, output_name)[source]
Add a osh layer to the model that computes element-wise hyperbolic cosine for the input tensor. Refer to the
CoshLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_crop(name, left, right, top, bottom, offset, input_names, output_name)[source]
Add a cropping layer to the model. The cropping layer have two functional modes:
When it has 1 input blob, it crops the input blob based on the 4 parameters
[left, right, top, bottom]
.When it has 2 input blobs, it crops the first input blob based on the dimension of the second blob with an offset.
Refer to the
CropLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- left: int
Number of elements to be cropped on the left side of the input blob. When the crop layer takes 2 inputs, this parameter is ignored.
- right: int
Number of elements to be cropped on the right side of the input blob. When the crop layer takes 2 inputs, this parameter is ignored.
- top: int
Number of elements to be cropped on the top of the input blob. When the crop layer takes 2 inputs, this parameter is ignored.
- bottom: int
Number of elements to be cropped on the bottom of the input blob. When the crop layer takes 2 inputs, this parameter is ignored.
- offset: list of int
Offset along the height and width directions when the crop layer takes 2 inputs. Must be a list of length 2. When the crop layer takes 1 input, this parameter is ignored.
- input_names: list of str
The input blob names of this layer. Must be either a list of 1 string (1 input crop layer), or a list of 2 strings (2-input crop layer).
- output_name: str
The output blob name of this layer.
See also
- add_crop_resize(name, input_names, output_name, target_height=1, target_width=1, mode='STRICT_ALIGN_ENDPOINTS_MODE', normalized_roi=False, box_indices_mode='CORNERS_HEIGHT_FIRST', spatial_scale=1.0)[source]
Add a crop resize layer to the model. A layer that extracts cropped spatial patches or RoIs (regions of interest) from the input and resizes them to a pre-specified size using bilinear interpolation. Note that RoI Align layer can be implemented with this layer followed by a pooling layer. Refer to the
CropResizeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
- Must be a list of two names: image feature map and crop indices/RoI input.
First input corresponds to a blob with shape
[1, Batch, C, H_in, W_in]
. This represents a batch of input image feature data withC
channels.The second input shape must be
[N, 1, 4, 1, 1]
or[N, 1, 5, 1, 1]
. This represents the bounding box coordinates forN
patches/RoIs.
N
: number of patches/RoIs to be extracted.If RoI shape =
[N, 1, 4, 1, 1]
, the channel axis corresponds to the four coordinates specifying the bounding box. All the N~ RoIs are extracted from all the batches of the input.If RoI shape =
[N, 1, 5, 1, 1]
, the first element of the channel axis specifies the input batch id from which to extract the RoI and must be in the interval[0, Batch - 1]
. That is,n
-th RoI is extracted from theRoI[n,0,0,0]
-th input batch id. The last four elements of the channel axis specify the bounding box coordinates.
- output_name: str
The output blob name of this layer.
- target_height: int
Output height dimension.
- target_width: int
Output width dimension.
- mode: str
The following values are supported:
'STRICT_ALIGN_ENDPOINTS_MODE'
,'ALIGN_ENDPOINTS_MODE'
,'UPSAMPLE_MODE'
,'ROI_ALIGN_MODE'
.This parameter determines the sampling grid used for bilinear interpolation.
- normalized_roi: bool
If true the bounding box coordinates must be in the interval
[0, 1]
. They are scaled by(input_height - 1)
,(input_width - 1)
; that is, based on the input spatial dimensions.If false the bounding box coordinates must be in the interval
[0, input_height - 1]
and[0, input_width - 1]
, respectively for height and width dimensions.
- box_indices_mode: str
The following values are supported:
'CORNERS_HEIGHT_FIRST'
,'CORNERS_WIDTH_FIRST'
,'CENTER_SIZE_HEIGHT_FIRST'
,'CENTER_SIZE_WIDTH_FIRST'
.- Representation used to interpret the bounding box coordinates (RoI) input.
'CORNERS_HEIGHT_FIRST'
:[h_start, w_start, h_end, w_end]
'CORNERS_WIDTH_FIRST'
:[w_start, h_start, w_end, h_end]
'CENTER_SIZE_HEIGHT_FIRST'
:[h_center, w_center, box_height, box_width]
'CENTER_SIZE_WIDTH_FIRST'
:[w_center, h_center, box_width, box_height]
- spatial_scale: float
Additional spatial scale that multiplies the bounding box coordinates. Generally used while implementing the RoI Align layer, which uses unnormalized RoI coordinates along with a spatial scale less than or equal to 1.
See also
- add_cumsum(name, input_names, output_name, axis=-1, reverse=False, exclusive=False)[source]
Add a cum sum layer to the model computes the cumulative sum values of the input along a given axis. Refer to the
CumSumLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- axis: int, optional
Axis to perform the operation, default: -1.
- reverse: bool, optional
if true, cumsum is performed in the opposite direction, default: False.
- exclusive: bool, optional
whether to perform exclusive or inclusive cumulative summation, default: False.
- add_custom(name, input_names, output_names, custom_proto_spec=None)[source]
Add a custom layer. Refer to the
CustomLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names to this layer.
- output_names: list of str
The output blob names from this layer.
- custom_proto_spec: CustomLayerParams
A protobuf CustomLayerParams message. This can also be left blank and filled in later.
- add_divide_broadcastable(name, input_names, output_name)[source]
Add a divide_broadcastable layer to the model that performs element-wise division operation with broadcast support. Refer to the
DivideBroadcastableLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_elementwise(name, input_names, output_name, mode, alpha=None)[source]
Add an element-wise operation layer to the model. Refer to the specification (NeuralNetwork.proto) for more details.
- Parameters:
- name: str
The name of this layer.
- input_names: list of str
A list of input blob names of this layer. The input blobs should have the same shape.
- output_name: str
The output blob name of this layer.
- mode: str
A string specifying the mode of the elementwise layer. It can be one of the following:
'CONCAT'
: Concatenate input blobs along the channel axis.'SEQUENCE_CONCAT'
: Concatenate input blobs along the sequence axis.'ADD'
: Perform an element-wise summation over the input blobs.'MULTIPLY'
: Perform an element-wise multiplication over the input blobs.'DOT'
: Compute the dot product of the two input blobs. In this mode, the length ofinput_names
should be 2.'COS'
: Compute the cosine similarity of the two input blobs. In this mode, the length ofinput_names
should be 2.'MAX'
: Compute the element-wise maximum over the input blobs.`'MIN'`
: Compute the element-wise minimum over the input blobs.'AVE'
: Compute the element-wise average over the input blobs.
- alpha: float
if
mode == 'ADD'
and there is only oneinput_name
,alpha
is added to the input.if
mode == 'MULTIPLY'
and there is only oneinput_name
,alpha
is multiplied to the input.
See also
- add_embedding(name, W, b, input_dim, output_channels, has_bias, input_name, output_name, is_quantized_weight=False, quantization_type='linear', nbits=8, quant_scale=None, quant_bias=None, quant_lut=None)[source]
Add an embedding layer to the model. Refer to the
EmbeddingLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- W: float32 numpy.array or bytes()
Weight matrix of shape
(output_channels, input_dim)
. IfW
is of typebytes()
(quantized to 1-8 bits), other quantization related arguments must be provided as well (see below).- b: numpy.array
Bias vector of shape
(output_channels, )
.- input_dim: int
Size of the vocabulary (1 + maximum integer index of the words).
- output_channels: int
Number of output channels.
- has_bias: boolean
Whether the bias vector of this layer is ignored in the
spec
.If True, the bias vector of this layer is not ignored.
If False, the bias vector is ignored.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- Quantization arguments expected, when ``W`` is of type ``bytes()``:
- is_quantized_weight: bool
Set it to true when
W
is of typebytes()
, representing quantized weights.- quantization_type: str
When weights are quantized (that is,
W
is of typebytes()
), this should be either"linear"
or"lut"
.- nbits: int
Should be between 1 and 8 (inclusive). Number of bits per weight value.
- quant_scale: numpy.array(dtype=numpy.float32)
Scale vector to be used with linear quantization. Must be of length either 1 or output_channels.
- quant_bias: numpy.array(dtype=numpy.float32)
Bias vector to be used with linear quantization. Must be of length either 1 or output_channels.
- quant_lut: numpy.array(dtype=numpy.float32)
The LUT (look up table) to be used with LUT quantization. Must be of length 2^n bits.
See also
- add_embedding_nd(name, input_name, output_name, vocab_size, embedding_size, W, b=None, is_quantized_weight=False, quantization_type='linear', nbits=8, quant_scale=None, quant_bias=None, quant_lut=None)[source]
Add an embedding layer to the model that performs a matrix lookup and optionally adds a bias. Refer to the
EmbeddingNDLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- vocab_size: int
Size of the vocabulary (1 + maximum integer index of the words).
- embedding_size: int
Size of the embedded vector.
- W: float32 numpy.array or bytes()
Weight matrix of shape (embedding_size, vocab_size). If W is of type bytes(), i.e. quantized to 1-8 bits, other quantization related arguments must be provided as well (see below).
- b: numpy.array , optional
Bias vector of shape (embedding_size, ).
- Quantization arguments expected, when W is of type bytes():
- is_quantized_weight: bool
Set it to true when W is of type bytes(), representing quantized weights
- quantization_type: str
When weights are quantized (i.e. W is of type bytes()), this should be either “linear” or “lut”.
- nbits: int
Should be between 1 and 8 (inclusive). Number of bits per weight value.
- quant_scale: numpy.array(dtype=numpy.float32)
scale vector to be used with linear quantization. Must be of length either 1 or embedding_size.
- quant_bias: numpy.array(dtype=numpy.float32)
bias vector to be used with linear quantization. Must be of length either 1 or embedding_size.
- quant_lut: numpy.array(dtype=numpy.float32)
the LUT (look up table) to be used with LUT quantization. Must be of length 2^nbits.
See also
- add_equal(name, input_names, output_name, alpha=0.0)[source]
Add an equal layer to the model that performs the element-wise equal (=) operation. Broadcasting is supported. Refer to the
EqualLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- alpha: float, optional
y = x1 != alpha, if only one input is provided, default: 0.
See also
- add_erf(name, input_name, output_name)[source]
Add an erf function (gaussian error function) layer to the model. Refer to the
ErfLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_exp2(name, input_name, output_name)[source]
Add an exp2 layer to the model that performs element-wise experiential operation. Refer to the
Exp2LayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_expand_dims(name, input_name, output_name, axes)[source]
Add an expand dims layer to the model that increases the rank of the input tensor by adding unit dimensions. Refer to the
ExpandDimsLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int
Dimensions the operation perform on.
See also
- add_fill_dynamic(name, input_name, output_name, value=0.0)[source]
Add a fill_dynamic layer to the model that outputs a tensor filled with a scalar value. Refer to the
FillDynamicLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- value: float, optional
A scalar value for the fill operation, default: 0.
See also
- add_fill_like(name, input_name, output_name, value=0.0)[source]
Add a fill_like layer to the model outputs a tensor filled with a scalar value. Refer to the
FillLikeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- value: float, optional
A scalar value for the fill operation, default 0.
See also
- add_fill_static(name, output_name, output_shape, value=0.0)[source]
Add a fill_static layer to the model that outputs a tensor filled with a scalar value given shape as parameter. Refer to the
FillStaticLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- output_name: str
The output blob name of this layer.
- output_shape: list of int or tuple of int
The target shape of the output tensor.
- value: float, optional
A scalar value for the fill operation, default 0.
See also
- add_flatten(name, mode, input_name, output_name)[source]
Add a flatten layer. Only flattens the channel, height and width axis. Leaves the sequence axis as is. Refer to the
FlattenLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- mode: int
If mode == 0, the flatten layer is in CHANNEL_FIRST mode.
If mode == 1, the flatten layer is in CHANNEL_LAST mode.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
See also
- add_flatten_to_2d(name, input_name, output_name, axis=1)[source]
Add a flatten_to_2d layer to the model that flattens the input tensor into a 2-dimensional matrix. Refer to the
FlattenTo2DLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The of input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axis: int, optional
Axis to perform the operation, default: 1.
See also
- add_floor(name, input_name, output_name)[source]
Add a floor layer to the model that performs element-wise floor operation on the input tensor that rounds the value to the largest integer not greater than x. Refer to the
FloorLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_floor_div_broadcastable(name, input_names, output_name)[source]
Add a floor_div_broadcastable layer to the model that performs floor division operation with broadcast support. Refer to the
FloorDivBroadcastableLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
See also
- add_gather(name, input_names, output_name, axis=0)[source]
Add a gather layer to the model that gathers elements or slices from data and store to a tensor whose shape is defined by indices from the input. Refer to the
GatherLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- axis: int, optional
The axis the operation perform on, default: 0.
- add_gather_along_axis(name, input_names, output_name, axis=0)[source]
Add a gather_along_axis layer to the model that gathers elements or slices from data and store to a tensor whose shape is defined by indices from the input along the given axis into the output tensor. Refer to the
GatherAlongAxisLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- axis: int, optional
The axis the operation perform on, default: 0.
- add_gather_nd(name, input_names, output_name)[source]
Add a gather layer to the model that gathers elements or slices from data and store to a tensor whose shape is defined by indices from the input. This is the reverse operation of the scatter operation. Refer to the
GatherNDLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_gelu(name, input_name, output_name, mode='EXACT')[source]
Add a GELU (gaussian error linear unit) activation layer, which is:
0.5 * x * (1 + erf(x / sqrt(2)))
. Refer to theGeluLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- mode: str, optional
Gelu mode in [EXACT | TANH_APPROXIMATION | SIGMOID_APPROXIMATION], default EXACT.
- add_get_shape(name, input_name, output_name)[source]
Add a get_shape layer to the model. Refer to the
GetShapeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_global_pooling3d(name, input_name, output_name, pooling_type)[source]
Add a layer to pool three spatial dimensions down to one value. This behaves like a special case of Pooling3DLayerParams in which the Kernel is the size of the input and there is no padding.
Refer to the
GlobalPooling3DLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- pooling_type: str
Type of pooling performed. Can either be
'MAX'
OR'AVERAGE'
.
See also
- add_greater_than(name, input_names, output_name, use_greater_than_equal=False, alpha=0.0)[source]
Add a greater_than layer to the model that performs the element-wise greater-than (>) operation or greater-than-or-equal-to (>=) operation. Broadcasting is supported. Refer to the
GreaterThanLayerParams
,GreaterEqualLayerParams
messages in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- use_greater_than_equal: bool, optional
Whether or not to allow greater than or equal to, default: false.
- alpha: float, optional
y = x1 != alpha, if only one input is provided, default: 0.
See also
- add_gru(name, W_h, W_x, b, hidden_size, input_size, input_names, output_names, activation='TANH', inner_activation='SIGMOID_HARD', output_all=False, reverse_input=False)[source]
Add a Gated-Recurrent Unit (GRU) layer to the model. Refer to the
GRULayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- W_h: [numpy.array]
List of recursion weight matrices. The ordering is
[R_z, R_r, R_o]
, whereR_z
,R_r
andR_o
are weight matrices at update gate, reset gate and output gate. The shapes of these matrices are(hidden_size, hidden_size)
.- W_x: [numpy.array]
List of input weight matrices. The ordering is
[W_z, W_r, W_o]
, whereW_z
,W_r
, andW_o
are weight matrices at update gate, reset gate and output gate. The shapes of these matrices are(hidden_size, input_size)
.- b: [numpy.array] or None
List of biases of the GRU layer. The ordering is
[b_z, b_r, b_o]
, whereb_z
,b_r
, andb_o
are biases at update gate, reset gate and output gate. IfNone
, biases are ignored. Otherwise the shapes of the biases are(hidden_size, )
.- hidden_size: int
Number of hidden units. This is equal to the number of channels of output shape.
- input_size: int
Number of the number of channels of input shape.
- activation: str
Activation function used at the output gate. Can be one of the following options: [
'RELU'
,'TANH'
,'SIGMOID'
,'SCALED_TANH'
,'SIGMOID_HARD'
,'LINEAR'
]. Defaults to'TANH'
. See add_activation for more detailed description.- inner_activation: str
Inner activation function used at update and reset gates. Can be one of the following options: [
'RELU'
,'TANH'
,'SIGMOID'
,'SCALED_TANH'
,'SIGMOID_HARD'
,'LINEAR'
]. Defaults to'SIGMOID_HARD'
. See add_activation for more detailed description.- input_names: list of str
The input blob names list of this layer, in the order of
[x, h_input]
.- output_names: list of str
The output blob names list of this layer, in the order of
[y, h_output]
.- output_all: boolean
Whether the recurrent layer should output at every time step.
If False, the output is the result after the final state update.
If True, the output is a sequence, containing outputs at all time steps.
- reverse_input: boolean
Whether the recurrent layer should process the input sequence in the reverse order.
If False, the input sequence order is not reversed.
If True, the input sequence order is reversed.
See also
- add_inner_product(name, W, b, input_channels, output_channels, has_bias, input_name, output_name, int_8_dynamic_quantize=False, is_quantized_weight=False, quantization_type='linear', nbits=8, quant_scale=None, quant_bias=None, quant_lut=None)[source]
Add an inner product layer to the model. Refer to the
InnerProductLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- W: numpy.array or bytes()
Weight matrix of shape
(output_channels, input_channels)
. IfW
is of typebytes()
(quantized), other quantization related arguments must be provided as well (see below).- b: numpy.array
Bias vector of shape:
(output_channels, )
.- input_channels: int
Number of input channels.
- output_channels: int
Number of output channels.
- has_bias: boolean
Whether the bias vector of this layer is ignored in the spec.
If True, the bias vector of this layer is not ignored.
If False, the bias vector is ignored.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- Quantization arguments, used when ``W`` is of type ``bytes()``:
- int_8_dynamic_quantize: boolean
Whether to quantize and dequantize before and after inner product, respectively. Expects byte weights, representing int8 values, if True. See NeuralNetwork.proto for other validation conditions.
- is_quantized_weight: bool, optional
Set it to true when
W
is of typebytes()
, representing quantized weights, default: false.- quantization_type: str
When weights are quantized (that is,
W
is of typebytes()
), this should be either"linear"
or"lut"
.- nbits: int
Should be between 1 and 8 (inclusive). Number of bits per weight value. Only applicable when weights are quantized.
- quant_scale: numpy.array(dtype=numpy.float32)
scale vector to be used with linear quantization. Must be of length either 1 or output_channels.
- quant_bias: numpy.array(dtype=numpy.float32)
bias vector to be used with linear quantization. Must be of length either 1 or output_channels.
- quant_lut: numpy.array(dtype=numpy.float32)
the LUT (look up table) to be used with LUT quantization. Must be of length 2^n bits.
See also
- add_l2_normalize(name, input_name, output_name, epsilon=1e-05)[source]
Add L2 normalize layer. Normalizes the input by the L2 norm, i.e. divides by the the square root of the sum of squares of all elements of the input along C, H and W dimensions. Refer to the
L2NormalizeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- epsilon: float
small bias to avoid division by zero.
- add_layer_normalization(name, input_name, output_name, normalized_shape, gamma, beta, eps=1e-05)[source]
Add a layer normalization layer to the model that applies layer normalization over the input tensor. Refer to the
LayerNormalizationLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- normalized_shape: list of int or tuple of int
Input shape from an expected input of size.
- gamma: WeightParams
Weight parameters.
- beta: WeightParams
Bias parameters.
- eps: float, optional
Constant value added to the denominator, default: 1e-5.
- add_less_than(name, input_names, output_name, use_less_than_equal=False, alpha=0.0)[source]
Add a less_than layer to the model that performs the element-wise less-than (<) operation or less-than-or-equal-to (<=) operation. Broadcasting is supported. Refer to the
LessThanL_ayerParams
,LessEqualLayerParams
messages in specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- use_less_than_equal: bool, optional
Whether or not to allow less than or equal to, default: false.
- alpha: float, optional
y = x1 != alpha, if only one input is provided, default: 0.
See also
- add_load_constant(name, output_name, constant_value, shape)[source]
Add a load constant layer. Refer to the
LoadConstantLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- output_name: str
The output blob name of this layer.
- constant_value: numpy.array
value of the constant as a numpy array.
- shape: list of int or tuple of int
List of ints representing the shape of the constant. Must be of length 3: [C,H,W]
See also
- add_load_constant_nd(name, output_name, constant_value, shape)[source]
Add a load_constant layer that loads data as a parameter and provides it as an output. Refer to the
LoadConstantNDLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- output_name: str
The output blob name of this layer.
- constant_value: numpy.array()
value of the constant as a numpy array.
- shape: list of int or tuple of int
List of ints representing the shape of the constant.
See also
- add_logical(name, input_names, output_name, mode)[source]
Add a logical layer to the model that performs element-wise logical and/or/xor/not operation. Broadcasting is supported. Refer to the
LogicalOrLayerParams
,LogicalNotLayerParams
,LogicalNotLayerParams
, andLogicalAndLayerParam
messages in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- mode: str
Logical operation mode in [AND | OR | XOR | NOT].
- add_loop(name, body_network=None, input_name=None, condition=None, condition_network=None, max_iterations=None)[source]
Add a loop layer to the model that provides the functionality of a
for
loop, or awhile
loop. Refer to theLoopLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- body_network: NeuralNetwork
Neural network to execute for the body of the loop.
- input_name: str
The input blob name of this layer.
- condition: str, optional
Condition of the loop.
- condition_network: NeuralNetwork, optional
Neural network to execute for the condition of the loop.
- max_iterations: int, optional
Maximum number of iterations of the loop.
See also
- add_loop_break(name)[source]
Add a loop_break layer to the model that terminates the loop that contains this layer. Must reside in the
bodyNetwork
of the loop layer. Refer to theLoopBreakLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
See also
- add_loop_continue(name)[source]
Add a loop_continue layer to the model that stops the current loop iteration and continue on the next iteration. Must reside in the
bodyNetwork
of the loop layer. Refer to theLoopContinueLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
See also
- add_lower_triangular(name, input_name, output_name, k=0)[source]
Add a lower_triangular layer to the model that copies a tensor setting everything outside lower triangular to zero. Refer to the
LowerTriangularLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The of input blob name of this layer.
- output_name: str
The output blob name of this layer.
- k: int, optional
Diagonal below which to zero elements, default: 0 (main diagonal), k < 0 is lower it and k > 0 is upper.
See also
- add_lrn(name, input_name, output_name, alpha, beta, local_size, k=1.0)[source]
Add a LRN (local response normalization) layer. Supports “across” channels normalization. Refer to the
LRNLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- alpha: float
multiplicative constant in the denominator.
- beta: float
exponent of the normalizing term in the denominator.
- k: float
bias term in the denominator. Must be positive.
- local_size: int
size of the neighborhood along the channel axis.
See also
- add_matrix_band_part(name, input_name, output_name, num_lower=-1, num_upper=-1)[source]
Add a matrix_band_part layer to the model that copies a tensor setting everything outside a central band in each inner-most matrix to zero. Refer to the
MatrixBandPartLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The of input blob name of this layer.
- output_name: str
The output blob name of this layer.
- num_lower: int, optional
Number of lower sub-diagonals to keep. Default: -1 (keep entire lower triangle).
- num_upper: int, optional
Number of upper sub-diagonals to keep. Default: -1 (keep entire upper triangle).
See also
- add_max_broadcastable(name, input_names, output_name)[source]
Add a max_broadcastable layer to the model that performs element-wise maximum operation with broadcast support. Refer to the
MaxBroadcastableLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_min_broadcastable(name, input_names, output_name)[source]
Add a min_broadcastable layer to the model that performs element-wise minimum operation with broadcast support. Refer to the
MinBroadcastableLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_mod_broadcastable(name, input_names, output_name)[source]
Add a mod_broadcastable layer to the model that performs element-wise modular operation with broadcast support. Refer to the
ModBroadcastableLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_multiply_broadcastable(name, input_names, output_name)[source]
Add a multiply_broadcastable layer to the model that performs element-wise multiplication operation with broadcast support. Refer to the
MultiplyBroadcastableLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_mvn(name, input_name, output_name, across_channels=True, normalize_variance=True, epsilon=1e-05)[source]
Add an MVN (mean variance normalization) layer. Computes mean, variance and normalizes the input. Refer to the
MeanVarianceNormalizeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- across_channels: boolean
If False, each channel plane is normalized separately If True, mean/variance is computed across all C, H and W dimensions
- normalize_variance: boolean
If False, only mean subtraction is performed.
- epsilon: float
small bias to avoid division by zero.
See also
- add_nms(name, input_names, output_names, iou_threshold=0.5, score_threshold=0.0, max_boxes=1, per_class_suppression=False)[source]
Add a non maximum suppression layer. Refer to the
NonMaximumSuppressionLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer. Must be at least 2, and maximum 5.
- output_names: list of str
The output blob names of this layer. Must be of length 4 exactly.
- iou_threshold: float
intersection over union threshold for suppression. Ignored if 3rd input is present.
- score_threshold: float
threshold for selecting boxes to be used for NMS algorithm. Ignored if 4th input is present.
- max_boxes: int
maximum number of boxes to output. Ignored if 5th input is present.
- per_class_suppression: bool
If true, boxes are organized into classes and suppression is applied to each class group separately
See also
- add_not_equal(name, input_names, output_name, alpha=0.0)[source]
Add a not_equal layer to the model that performs the element-wise not equal (!=) operation. Broadcasting is supported. Refer to the
NotEqualLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- alpha: float, optional
y = x1 != alpha, if only one input is provided, default: 0.
See also
- add_one_hot(name, input_names, output_name, one_hot_vector_size=None, axis=-1, on_value=1.0, off_value=0.0)[source]
Add a one hot layer to the model that computes the one hot representation of the input tensor. Refer to the
OneHotLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- one_hot_vector_size: int > 0
size of the one hot vector.
- axis: int, optional
refers to the axis in the output tensor, default: -1.
- on_value: float, optional
Constant value on locations represented by first input, default: 1.0.
- off_value: float, optional
Constant value at all other locations, default: 0.0.
- add_optionals(optionals_in, optionals_out)[source]
Add optional inputs and outputs to the model spec.
- Parameters:
- optionals_in: list of str
List of inputs that are optionals.
- optionals_out: list of str
List of outputs that are optionals.
See also
- add_padding(name, left=0, right=0, top=0, bottom=0, value=0, input_name='data', output_name='out', padding_type='constant')[source]
Add a padding layer to the model that performs padding along spatial dimensions.
Refer to the
PaddingLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- left: int
Number of elements to be padded on the left side of the input blob.
- right: int
Number of elements to be padded on the right side of the input blob.
- top: int
Number of elements to be padded on the top of the input blob.
- bottom: int
Number of elements to be padded on the bottom of the input blob.
- value: float
Value of the elements padded. Used only when
padding_type = 'constant'
.- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- padding_type: str
Type of the padding. Can be one of
'constant'
,'reflection'
, or'replication'
.
See also
- add_permute(name, dim, input_name, output_name)[source]
Add a permute layer. Assumes that the input has dimensions in the order [Seq, C, H, W] Refer to the
PermuteLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- dim: tuple
The order in which to permute the input dimensions = [seq,C,H,W]. Must have length 4 and a permutation of
[0, 1, 2, 3]
.examples:
Lets say input has shape: [seq, C, H, W].
If
dim
is set to[0, 3, 1, 2]
, then the output has shape[W,C,H]
and has the same sequence length that of the input.If
dim
is set to[3, 1, 2, 0]
, and the input is a sequence of data with lengthSeq
and shape[C, 1, 1]
, then the output is a unit sequence of data with shape[C, 1, Seq]
.If
dim
is set to[0, 3, 2, 1]
, the output is a reverse of the input:[C, H, W] -> [W, H, C]
.If
dim
is not set, or is set to[0, 1, 2, 3]
, the output is the same as the input.- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
See also
- add_pooling(name, height, width, stride_height, stride_width, layer_type, padding_type, input_name, output_name, exclude_pad_area=True, is_global=False, padding_top=0, padding_bottom=0, padding_left=0, padding_right=0, same_padding_asymmetry_mode='BOTTOM_RIGHT_HEAVY')[source]
Add a pooling layer to the model that performs spatial pooling. Refer to the
PoolingLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- height: int
Height of pooling region.
- width: int
Width of pooling region.
- stride_height: int
Stride along the height direction.
- stride_width: int
Stride along the width direction.
- layer_type: str
Type of pooling performed. Can either be
'MAX'
,'AVERAGE'
, or'L2'
.- padding_type: str
Option for the type of padding and output blob shape. Can be either
'VALID'
,'SAME'
, or'INCLUDE_LAST_PIXEL'
.- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- exclude_pad_area: boolean
Whether to exclude padded area in the
'AVERAGE'
pooling operation, default: true. This flag is only used with average pooling.If True, the value of the padded area will be excluded.
If False, the padded area will be included.
- is_global: boolean
Whether the pooling operation is global. Defaults to False.
If True, the pooling operation is global. The pooling region is of the same size of the input blob. Parameters
height
,width
,stride_height
, andstride_width
will be ignored.If False, the pooling operation is not global.
- padding_top, padding_bottom, padding_left, padding_right: int
Values of height (top, bottom) and width (left, right) padding to be used if padding type is
"VALID"
or"INCLUDE_LAST_PIXEL"
.- same_padding_asymmetry_mode: str.
Type of asymmetric padding to be used when
padding_type = 'SAME'
. Can be either'BOTTOM_RIGHT_HEAVY'
or'TOP_LEFT_HEAVY'
.
See also
- add_pooling3d(name, input_name, output_name, pooling_type, kernel_depth, kernel_height, kernel_width, stride_depth, stride_height, stride_width, padding_mode='valid', custom_padding_front=0, custom_padding_back=0, custom_padding_top=0, custom_padding_bottom=0, custom_padding_left=0, custom_padding_right=0, average_pooling_count_excludes_padding=False)[source]
Add a pooling layer to the model that performs spatial pooling across three dimensions. Refer to the
Pooling3DLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- pooling_type: str
Type of pooling performed. Can either be
'MAX'
OR'AVERAGE'
.- kernel_depth: int
Depth of the pooling region.
- kernel_height: int
Height of pooling region.
- kernel_width: int
Width of pooling region.
- stride_depth: int
Stride along the depth direction
- stride_height: int
Stride along the height direction.
- stride_width: int
Stride along the width direction.
- padding_mode: str
Option for the padding type and output blob shape. Can be
'VALID'
,'SAME'
, or'CUSTOM'
.- custom_padding_front: int
Padding before the input in the depth direction.
- custom_padding_back: int
Padding after the input in the depth direction.
- custom_padding_top: int
Padding before the input in the height direction.
- custom_padding_bottom: int
Padding after the input in the height direction.
- custom_padding_left: int
Padding before the input in the width direction.
- custom_padding_right: int
Padding after the input in the width direction.
- average_pooling_count_excludes_padding: boolean
If true, exclude zeros from padding in average pooling. Can only be true for
AVERAGE
padding.
See also
- add_pow_broadcastable(name, input_names, output_name)[source]
Add a pow_broadcastable layer to the model that performs element-wise power operation with broadcast support. Refer to the
PowBroadcastableLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_random_bernoulli_dynamic(name, input_names, output_name, prob=0.5, seed=-1)[source]
Add a random_bernoulli_dynamic layer to the model that fills the output tensor with random values from Bernoulli distribution. Refer to the
RandomBernoulliDynamicLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- prob: float, optional
Probabilities for Bernoulli distribution, default: 0.5.
- seed: int, optional
Used to create a random seed for the distribution. default -1 (random).
- add_random_bernoulli_like(name, input_name, output_name, prob=0.5, seed=-1)[source]
Add a random_bernoulli_like layer to the model that fills the output tensor with random values from Bernoulli distribution. Refer to the
RandomBernoulliLikeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- prob: float, optional
Probabilities for Bernoulli distribution, default: 0.5.
- seed: int, optional
Used to create a random seed for the distribution. default -1 (random).
- add_random_bernoulli_static(name, output_name, output_shape, prob=0.5, seed=-1)[source]
Add a random_bernoulli_static layer to the model that fills the output tensor with random values from Bernoulli distribution. Refer to the
RandomBernoulliStaticLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- output_name: str
The output blob name of this layer.
- output_shape: list of int or tuple of int
Target shape of the output tensor.
- prob: float, optional
Probabilities for Bernoulli distribution, default: 0.5.
- seed: int, optional
Used to create a random seed for the distribution. default -1 (random).
- add_random_normal_dynamic(name, input_names, output_name, mean=0.0, stddev=0.0, seed=-1)[source]
Add a random_normal_dynamic layer to the model that fills the output tensor with random values from normal distribution. Refer to the
RandomNormalDynamicLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- mean: float, optional
The mean of the normal distribution, default: 0.0.
- stddev: float, optional
The standard deviation of the normal distribution, default: 1.0.
- seed: int, optional
Used to create a random seed for the distribution. Default -1 (random).
- add_random_normal_like(name, input_name, output_name, mean=0.0, stddev=0.0, seed=-1)[source]
Add a random_normal_like layer to the model that fills the output tensor with random values from normal distribution. Refer to the
RandomNormalLikeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- mean: float, optional
The mean of the normal distribution, default: 0.0.
- stddev: float, optional
The standard deviation of the normal distribution, default: 1.0.
- seed: int, optional
Used to create a random seed for the distribution, default -1 (random).
- add_random_normal_static(name, output_name, output_shape, mean=0.0, stddev=0.0, seed=-1)[source]
Add a random_normal_static layer to the model that fills the output tensor with random values from normal distribution. Refer to the
RandomNormaStaticLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- output_name: str
The output blob name of this layer.
- output_shape: list of int or tuple of int
Target shape of the output tensor.
- mean: float, optional
The mean of the normal distribution, default: 0.0.
- stddev: float, optional
The standard deviation of the normal distribution, default: 1.0.
- seed: int, optional
Used to create a random seed for the distribution. Default -1 (random).
- add_random_uniform_dynamic(name, input_names, output_name, minval=0.0, maxval=1.0, seed=-1)[source]
Add a random_uniform_dynamic layer to the model that fills the output tensors with random values from uniform distribution. Refer to the
RandomUniformDynamicLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- minval: float, optional
Lower bound / minimum value of the uniform distribution, default: 0.0.
- maxval: float, optional
Upper bound / maximum value of the uniform distribution, default: 1.0.
- seed: int, optional
Used to create a random seed for the distribution. default -1 (random).
- add_random_uniform_like(name, input_name, output_name, minval=0.0, maxval=1.0, seed=-1)[source]
Add a random_uniform_like layer to the model that fills the output tensors with random values from uniform distribution. Refer to the
RandomUniformLikeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- minval: float, optional
Lower bound / minimum value of the uniform distribution, default: 0.0.
- maxval: float, optional
Upper bound / maximum value of the uniform distribution, default: 1.0.
- seed: int, optional
Used to create a random seed for the distribution. default -1 (random).
- add_random_uniform_static(name, output_name, output_shape, minval=0.0, maxval=1.0, seed=-1)[source]
Add a random_uniform_static layer to the model that fills the output tensors with random values from uniform distribution. Refer to the
RandomUniformStaticLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- output_name: str
The output blob name of this layer.
- output_shape: list of int or tuple of int
Target shape of the output tensor.
- minval: float, optional
Lower bound / minimum value of the uniform distribution, default: 0.0.
- maxval: float, optional
Upper bound / maximum value of the uniform distribution, default: 1.0.
- seed: int, optional
Used to create a random seed for the distribution. default -1 (random).
- add_range_dynamic(name, input_names, output_name, start=0, step=1)[source]
Add a range_dynamic layer that returns a tensor that contains evenly spaced values. This layer has up to three inputs or no input and three parameters. Refer to the
RangeDynamicLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names. If input size == 1: end is input, start and step are read from parameters If input size == 2: end, start are inputs, step is read from parameters If input size == 3: start, end, step are all inputs, none of the parameters are used.
- output_name: str
The output blob name of this layer.
- start: int, optional
Range parameter: start. Ignored if start is provided as input, default: 0.
- step: int, optional
Range parameter: step. Ignored if step is provided as input, default: 1.
See also
- add_range_static(name, output_name, input_names=None, end=1, start=0, step=1)[source]
Add a range_static layer that returns a tensor that contains evenly spaced values. This layer has no input and three parameters. Refer to the
RangeStaticLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- output_name: str
The output blob name of this layer.
- input_names: list of str
The input blob names of this layer.
- end: int, optional
Range parameter: end, default: 1.
- start: int, optional
Range parameter: start, default: 0.
- step: int, optional
Range parameter: step size, default: 1.
See also
- add_rank_preserving_reshape(name, input_name, output_name, output_shape)[source]
Add a rank_preserving_reshape layer to the model that reshapes the input tensor without altering the rank of the tensor. Refer to the
RankPreservingReshapeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- output_shape: list of int or tuple of int
Determines the shape of the output blob. 0: copy the dimension of the input to output -1: calculate dimensions from the rest of the shape
- add_reduce(name, input_name, output_name, axis, mode, epsilon=1e-06)[source]
Add a reduce layer. Applies the function specified by the parameter mode, along dimension(s) specified by the parameter axis. Refer to the
ReduceLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axis: str
dimensions along which the reduction operation is applied. Allowed values: ‘CHW’, ‘HW’, ‘C’, ‘H’, ‘W’
- mode: str
Reduction operation to be applied. Allowed values: ‘sum’, ‘avg’, ‘prod’, ‘logsum’, ‘sumsquare’, ‘L1’, ‘L2’, ‘max’, ‘min’, ‘argmax’. ‘argmax’ is only supported with axis values ‘C’, ‘H’ and ‘W’.
- epsilon: float
number that is added to the input when ‘logsum’ function is applied.
See also
- add_reduce_l1(name, input_name, output_name, axes=None, keepdims=True, reduce_all=False)[source]
Add a reduce_l1 layer to the model that reduces the input tensor using
l1_normalization(elements across given dimensions)
. Refer to theReduceL1LayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int, optional
List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default:
None
(reduce_all)- keepdims: bool, optional
Whether or not to retain the reduced dimensions with length 1, default: true.
- reduce_all: bool, optional
Whether or not to reduce on all axes, default: false.
- add_reduce_l2(name, input_name, output_name, axes=None, keepdims=True, reduce_all=False)[source]
Add a reduce_l2 layer to the model that reduces the input tensor using
l2_normalization(elements across given dimensions)
. Refer to theReduceL2LayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int, optional
List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default:
None
(reduce_all)- keepdims: bool, optional
Whether or not to retain the reduced dimensions with length 1, default: true.
- reduce_all: bool, optional
Whether or not to reduce on all axes, default: false.
- add_reduce_logsum(name, input_name, output_name, axes=None, keepdims=True, reduce_all=False)[source]
Add a reduce_logsum layer to the model that reduces the input tensor using log(sum(elements across given dimensions)). Refer to the
ReduceLogSumLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int, optional
List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default:
None
(reduce_all)- keepdims: bool, optional
Whether or not to retain the reduced dimensions with length 1, default: true.
- reduce_all: bool, optional
Whether or not to reduce on all axes, default: false.
- add_reduce_logsumexp(name, input_name, output_name, axes=None, keepdims=True, reduce_all=False)[source]
Add a reduce_logsumexp layer to the model that computes
log(sum(exp(tensor)))
and reduces along the given axis. Refer to theReduceLogSumExpLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int, optional
List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default:
None
(reduce_all)- keepdims: bool, optional
Whether or not to retain the reduced dimensions with length 1, default: true.
- reduce_all: bool, optional
Whether or not to reduce on all axes, default: false.
- add_reduce_max(name, input_name, output_name, axes=None, keepdims=True, reduce_all=False)[source]
Add a reduce_max layer to the model that reduces the input tensor using
max(elements across given dimensions)
. Refer to theReduceMaxLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int, optional
List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default:
None
(reduce_all)- keepdims: bool, optional
Whether or not to retain the reduced dimensions with length 1, default: true.
- reduce_all: bool, optional
Whether or not to reduce on all axes, default: false.
- add_reduce_mean(name, input_name, output_name, axes=None, keepdims=True, reduce_all=False)[source]
Add a reduce_mean layer to the model that reduces the input tensor using
mean(elements across given dimensions)
. Refer to theReduceMeanLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int, optional
List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default:
None
(reduce_all)- keepdims: bool, optional
Whether or not to retain the reduced dimensions with length 1, default: true.
- reduce_all: bool, optional
Whether or not to reduce on all axes, default: false.
- add_reduce_min(name, input_name, output_name, axes=None, keepdims=True, reduce_all=False)[source]
Add a reduce_min layer to the model that reduces the input tensor using
min(elements across given dimensions)
. Refer to theReduceMinLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int, optional
List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default:
None
(reduce_all)- keepdims: bool, optional
Whether or not to retain the reduced dimensions with length 1, default: true.
- reduce_all: bool, optional
Whether or not to reduce on all axes, default: false.
- add_reduce_prod(name, input_name, output_name, axes=None, keepdims=True, reduce_all=False)[source]
Add a reduce_prod layer to the model that reduces the input tensor using
prod(elements across given dimensions)
. Refer to theReduceProdLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int, optional
List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default:
None
(reduce_all)- keepdims: bool, optional
Whether or not to retain the reduced dimensions with length 1, default: true.
- reduce_all: bool, optional
Whether or not to reduce on all axes. If axes list is empty, it will be set to true, default: false.
- add_reduce_sum(name, input_name, output_name, axes=None, keepdims=True, reduce_all=False)[source]
Add a reduce_sum layer to the model that reduces the input tensor using
sum(elements across given dimensions)
. Refer to theReduceSumLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int, optional
List of dimensions for the reduce operations. Each should be in range
[-rank(input), rank(input))
, default:None
(reduce_all
).- keepdims: bool, optional
Whether or not to retain the reduced dimensions with length 1, default: true.
- reduce_all: bool, optional
Whether or not to reduce on all axes, default: false.
- add_reduce_sumsquare(name, input_name, output_name, axes=None, keepdims=True, reduce_all=False)[source]
Add a reduce_sumsquare layer to the model that reduces the input tensor using
sum(square(elements across given dimensions))
. Refer to theReduceSumSquareLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int, optional
List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default:
None
(reduce_all)- keepdims: bool, optional
Whether or not to retain the reduced dimensions with length 1, default: true.
- reduce_all: bool, optional
Whether or not to reduce on all axes, default: false.
- add_reorganize_data(name, input_name, output_name, mode='SPACE_TO_DEPTH', block_size=2)[source]
Add a data reorganization layer of type “SPACE_TO_DEPTH” or “DEPTH_TO_SPACE”. Refer to the specification (NeuralNetwork.proto) for more details.
- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- mode: str
If mode == ‘SPACE_TO_DEPTH’: data is moved from the spatial to the channel dimension. Input is spatially divided into non-overlapping blocks of size block_size X block_size and data from each block is moved to the channel dimension. Output CHW dimensions are: [C * block_size * block_size, H/block_size, C/block_size].
If mode == ‘DEPTH_TO_SPACE’: data is moved from the channel to the spatial dimension. Reverse of the operation ‘SPACE_TO_DEPTH’. Output CHW dimensions are: [C/(block_size * block_size), H * block_size, C * block_size].
If mode == ‘PIXEL_SHUFFLE’: data is moved from the channel to the spatial dimension. Reverse of the operation ‘SPACE_TO_DEPTH’. Output CHW dimensions are: [C/(block_size * block_size), H * block_size, C * block_size].
- block_size: int
Must be greater than 1. Must divide H and W, when mode is ‘SPACE_TO_DEPTH’. (block_size * block_size) must divide C when mode is ‘DEPTH_TO_SPACE’ or ‘PIXEL_SHUFFLE’.
See also
- add_reshape(name, input_name, output_name, target_shape, mode)[source]
Add a reshape layer. Refer to the
ReshapeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- target_shape: tuple
Shape of the output blob. The product of target_shape must be equal to the shape of the input blob. Can be either length 3 (C,H,W) or length 4 (Seq,C,H,W).
- mode: int
If mode == 0, the reshape layer is in CHANNEL_FIRST mode.
If mode == 1, the reshape layer is in CHANNEL_LAST mode.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
See also
- add_reshape_dynamic(name, input_names, output_name)[source]
Add a reshape_dynamic layer to the model that reshapes a tensor. Refer to the
ReshapeDynamicLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_reshape_like(name, input_names, output_name)[source]
Add a reshape_like layer to the model that reshapes a tensor. Refer to the
ReshapeLikeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_reshape_static(name, input_name, output_name, output_shape)[source]
Add a reshape_static layer to the model that reshapes a tensor. Refer to the
ReshapeStaticLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- output_shape: list of int or tuple of int
Target shape of the output tensor.
- add_resize_bilinear(name, input_name, output_name, target_height=1, target_width=1, mode='ALIGN_ENDPOINTS_MODE')[source]
Add a resize bilinear layer to the model. A layer that resize the input to a given spatial size using bilinear interpolation. Refer to the
ResizeBilinearLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- target_height: int
Output height dimension.
- target_width: int
Output width dimension.
- mode: str
Following values are supported: ‘STRICT_ALIGN_ENDPOINTS_MODE’, ‘ALIGN_ENDPOINTS_MODE’, ‘UPSAMPLE_MODE’, ‘ROI_ALIGN_MODE’. This parameter determines the sampling grid used for bilinear interpolation.
See also
- add_reverse(name, input_name, output_name, reverse_dim=None)[source]
Add a reverse layer to the model that reverses specific dimensions of the input tensor. Refer to the
ReverseLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- reverse_dim: list of int or tuple of int
Reverse along the dimension, default [1].
See also
- add_reverse_sequence(name, input_names, output_name, batch_axis=0, seq_axis=-1)[source]
Add a reverse sequence layer to the model that reverses variable length slices. Refer to the
ReverseSeqLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- batch_axis: int, optional
Slices input along the dimension batch_axis, default 0.
- seq_axis: int, optional
Reverse along the dimension seq_axis, default: -1.
See also
- add_round(name, input_name, output_name)[source]
Add a round layer to the model that performs element-wise round operation on the input tensor that rounds the value to the nearest integer. Refer to the
RoundLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_scale(name, W, b, has_bias, input_name, output_name, shape_scale=None, shape_bias=None)[source]
Add a scale layer to the model. Refer to the
ScaleLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- W: int or numpy.array
Scale of the input.
- b: int or numpy.array
Bias to add to the input.
- has_bias: boolean
Whether the bias vector of this layer is ignored in the
spec
.- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- shape_scale: list of int or tuple of int
List of ints that specifies the shape of the scale parameter. Can be
[1]
,[C]
,[1,H,W]
, or[C,H,W]
.- shape_bias: list of int
List of ints that specifies the shape of the bias parameter (if present). Can be
[1]
,[C]
,[1,H,W]
, or[C,H,W]
.
See also
- add_scatter(name, input_names, output_name, axis=0, mode='UPDATE')[source]
Add a scatter layer to the model that scatters data into a new tensor according to indices from the input. Refer to the
ScatterLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- axis: int
The axis the operation perform on, default: 0.
- mode: str, optional
Scatter accumulation mode in [UPDATE | ADD | SUB | MUL | DIV | MAX | MIN], default: UPDATE.
- add_scatter_along_axis(name, input_names, output_name, axis=0, mode='UPDATE')[source]
Add a scatter_along_axis layer to the model that scatters data into a new tensor according to indices from the input along the given axis into the output tensor. Refer to the
ScatterAlongAxisLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- axis: int
The axis to perform on, default: 0.
- mode: str, optional
Scatter accumulation mode in [UPDATE | ADD | SUB | MUL | DIV | MAX | MIN], default: UPDATE
- add_scatter_nd(name, input_names, output_name, mode='UPDATE')[source]
Add a scatter layer to the model that scatters data into a new tensor according to indices from input. This is the reverse operation of the gather operation. Refer to the
ScatterNDLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- mode: str, optional
Scatter accumulation mode in [UPDATE | ADD | SUB | MUL | DIV | MAX | MIN], default: UPDATE
- add_sequence_repeat(name, nrep, input_name, output_name)[source]
Add a sequence repeat layer to the model. Refer to the
SequenceRepeatLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- nrep: int
Number of repetitions of the input blob along the sequence axis.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
See also
- add_sign(name, input_name, output_name)[source]
Add a sign layer to the model that performs element-wise sign operation (+1 for positive values, -1 for negative values, 0 for zeroes). Refer to the
SignLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_simple_rnn(name, W_h, W_x, b, hidden_size, input_size, activation, input_names, output_names, output_all=False, reverse_input=False)[source]
Add a simple recurrent layer to the model. Refer to the
SimpleRecurrentLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- W_h: numpy.array
Weights of the recurrent layer’s hidden state. Must be of shape
(hidden_size, hidden_size)
.- W_x: numpy.array
Weights of the recurrent layer’s input. Must be of shape
(hidden_size, input_size)
.- b: numpy.array or None
Bias of the recurrent layer’s output. If
None
, bias is ignored. Otherwise it must be of shape(hidden_size, )
.- hidden_size: int
Number of hidden units. This is equal to the number of channels of output shape.
- input_size: int
Number of the number of channels of input shape.
- activation: str
Activation function name. Can be one of the following option: [
'RELU'
,'TANH'
,'SIGMOID'
,'SCALED_TANH'
,'SIGMOID_HARD'
,'LINEAR'
]. See add_activation for more detailed description.- input_names: list of str
The input blob names list of this layer, in the order of
[x, h_input]
.- output_names: list of str
The output blob names list of this layer, in the order of
[y, h_output]
.- output_all: boolean
Whether the recurrent layer should output at every time step.
If False, the output is the result after the final state update.
If True, the output is a sequence, containing outputs at all time steps.
- reverse_input: boolean
Whether the recurrent layer should process the input sequence in the reverse order.
If False, the input sequence order is not reversed.
If True, the input sequence order is reversed.
See also
- add_sin(name, input_name, output_name)[source]
Add a sin layer to the model that computes element-wise sine for the input tensor. Refer to the
SinLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_sinh(name, input_name, output_name)[source]
Add a sinh layer to the model that computes element-wise hyperbolic sine for the input tensor. Refer to the
SinhLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_slice(name, input_name, output_name, axis, start_index=0, end_index=-1, stride=1)[source]
Add a slice layer. Equivalent to to numpy slice [start_index:end_index:stride], start_index is included, while end_index is exclusive. Refer to the
SliceLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axis: str
axis along which input is sliced. allowed values: ‘channel’, ‘height’, ‘width’
- start_index: int
must be non-negative.
- end_index: int
negative indexing is supported.
- stride: int
must be positive.
See also
- add_slice_by_size(name, input_names, output_name, axis, size)[source]
Add a slice layer. Equivalent to to numpy slice [start_index: start_index+size], Input is list of str which is [input_tensor, begin_id].
Assume input_tensor has shape (2, 3, 4), and axis=1, size=2. This would produce input_tensor[:, begin_id:begin_id+2, :]
Refer to the
SliceBySizeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- axis: int
axis along which input is sliced.
- size: int
The size of which input will be taken
See also
- add_slice_dynamic(name, input_names, output_name, end_ids=None, strides=None, begin_masks=None, end_masks=None, squeeze_masks=None)[source]
Add a slice_dynamic layer to the model that extracts a slice of size
(end - begin) / stride
from the given input tensor. Refer to theSliceDynamicLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- end_ids: list of int or tuple of int, optional
End offsets for slice layer, default: [1].
- strides: list of int or tuple of int, optional
Strides for slice layer, default: [1].
- begin_masks: list of bool, optional
Boolean masks for begin offsets, default: [false].
- end_masks: list of bool, optional
Boolean masks for end offsets, default: [false].
- squeeze_masks: list of bool, optional
Boolean masks for squeezing axis, default: [false].
See also
- add_slice_static(name, input_name, output_name, begin_ids, end_ids, strides, begin_masks, end_masks, squeeze_masks=None)[source]
Add a slice_static layer to the model that extracts a slice of size
(end - begin) / stride
from the given input tensor. Refer to theSliceStaticLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- begin_ids: list of int or tuple of int
Begin offsets for slice layer.
- end_ids: list of int or tuple of int
End offsets for slice layer.
- strides: list of int or tuple of int
Strides for slice layer.
- begin_masks: list of bool
Boolean masks for begin offsets.
- end_masks: list of bool
Boolean masks for end offsets.
- squeeze_masks: list of bool
Boolean masks for squeezing axis.
See also
- add_sliding_windows(name, input_name, output_name, axis, window_size, step=1)[source]
Add a sliding_windows layer to the model that returns a tensor containing all windows of size
window_size
* separated bystep
along the dimensionaxis
. Refer to theSlidingWindowsLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The of input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axis: int
Axis to perform the operation.
- window_size: int
Number of elements in the sliding window.
- step: int, optional
The stride of the input elements in the sliding window, default: 1.
See also
- add_softmax(name, input_name, output_name)[source]
Add a softmax layer to the model. Refer to the
SoftmaxLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
See also
- add_softmax_nd(name, input_name, output_name, axis)[source]
Add a softmax_nd layer to the model that performs softmax operation along the given axis. Refer to the
SoftmaxNDLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axis: int
Axis to perform the softmax operation on.
- add_split(name, input_name, output_names)[source]
Add a split layer that uniformly splits the input along the channel dimension to produce multiple outputs. Refer to the
SplitLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_names: list of str
List of output blob names of this layer.
See also
- add_split_nd(name, input_name, output_names, axis, num_splits=2, split_sizes=None)[source]
Add a split layer to the model that splits the input tensor into multiple output tensors. Either uniformly split the input tensor into
num_splits
tensors, or split into given size listsplit_sizes
output tensors. Refer to theSplitNDLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_names: list of str
The output blob names of this layer.
- axis: int
Axis to perform split on.
- num_splits: int, optional
Number of splits, default: 2.
- split_sizes: list of int or tuple of int, optional
List of size to split, default
[]
orNone
.
- add_squeeze(name, input_name, output_name, axes=None, squeeze_all=False)[source]
Add a squeeze layer to the model that decrease the rank of the input tensor by removing unit dimensions. Refer to the
SqueezeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- axes: list of int or tuple of int, optional
Dimensions to perform the operation, default:
None
(squeeze_all).- squeeze_all: bool, optional
If true, all dimensions that are 1 are squeezed, default: false.
See also
- add_stack(name, input_names, output_name, axis=0)[source]
Add a stack layer to the model that performs stack operation on a list of tensors into one rank+1 tensor on the given axis. Refer to the
StackLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- axis: int, optional
The axis to perform stack operation, default: 0.
- add_subtract_broadcastable(name, input_names, output_name)[source]
Add a subtract_broadcastable layer to the model that performs element-wise subtraction operation with broadcast support. Refer to the
SubtractBroadcastableLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
- add_tan(name, input_name, output_name)[source]
Add a tan layer to the model that computes element-wise tangent for the input tensor. Refer to the
TanLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_tanh(name, input_name, output_name)[source]
Add a tanh layer to the model that computes element-wise hyperbolic tangent for the input tensor. Refer to the
TanhLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- add_tile(name, input_name, output_name, reps=[])[source]
Add a tile layer to the model that construct a tensor by repeating the input tensor multiple number of times. Refer to the
TileLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str or list[str]
The input blob name of this layer. If second input is provided, reps parameter is ignored.
- output_name: str
The output blob name of this layer.
- reps: list of int or tuple of int
Number of times to replicate. If input_name provides two inputs, second input is used as reps and this parameter is ignored.
See also
- add_topk(name, input_names, output_names, k=0, axis=0, use_bottom_k=False)[source]
Add a topk layer to the model that returns top or bottom k values and the corresponding indices of the input tensor along a given axis. Refer to the
TopKLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer. It must be of length 1 or 2. The optional second input corresponds to value of K.
- output_names: list of str
The output blob names of this layer. First and second correspond to values and indices, respectively.
- k: int, optional
number of values/indices to be computed along the axis. Need not be given of there are two inputs, default: 0.
- axis: int, optional
axis along which the topk values/indices are computed. negative indexing is supported, default: 0
- use_bottom_k: bool, optional
if true, bottom k values are computed instead, default: false.
- add_transpose(name, axes, input_name, output_name)[source]
Add a N-D transpose layer with axes as a parameter. Refer to the
TransposeLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- axes: list of int or tuple of int
The list containing a permutation of “[0,1,2,…,N-1]” where N is the rank of input/output tensor.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
See also
- add_unary(name, input_name, output_name, mode, alpha=1.0, shift=0, scale=1.0, epsilon=None)[source]
Add a Unary layer. Applies the specified function (mode) to all the elements of the input. Prior to the application of the function the input can be scaled and shifted by using the ‘scale’, ‘shift’ parameters. Refer to the
UnaryFunctionLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- mode: str
Unary function. Allowed values: ‘sqrt’, ‘rsqrt’, ‘inverse’, ‘power’, ‘exp’, ‘log’, ‘abs’, threshold’.
- alpha: float
constant used in with modes ‘power’ and ‘threshold’.
- shift, scale: float
input is modified by scale and shift prior to the application of the unary function.
- epsilon: float
small bias to prevent division by zero.
See also
- add_unilstm(name, W_h, W_x, b, hidden_size, input_size, input_names, output_names, inner_activation='SIGMOID', cell_state_update_activation='TANH', output_activation='TANH', peep=None, output_all=False, forget_bias=False, coupled_input_forget_gate=False, cell_clip_threshold=50000.0, reverse_input=False)[source]
Add a Uni-directional LSTM layer to the model. Refer to the
UniDirectionalLSTMLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- W_h: [numpy.array]
List of recursion weight matrices. The ordering is [R_i, R_f, R_o, R_z], where R_i, R_f, R_o, R_z are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are (hidden_size, hidden_size).
- W_x: [numpy.array]
List of input weight matrices. The ordering is [W_i, W_f, W_o, W_z], where W_i, W_f, W_o, W_z are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are (hidden_size, input_size).
- b: [numpy.array] or None
List of biases. The ordering is [b_i, b_f, b_o, b_z], where b_i, b_f, b_o, b_z are biases at input gate, forget gate, output gate and cell gate. If
None
, biases are ignored. Otherwise the shapes of the biases are (hidden_size, ).- hidden_size: int
Number of hidden units. This is equal to the number of channels of output shape.
- input_size: int
Number of the number of channels of input shape.
- input_names: list of str
The input blob names list of this layer, in the order of [x, h_input, c_input].
- output_names: list of str
The output blob names list of this layer, in the order of [y, h_output, c_output].
- inner_activation: str
Inner activation function used at input and forget gate. Can be one of the following option: [‘RELU’, ‘TANH’, ‘SIGMOID’, ‘SCALED_TANH’, ‘SIGMOID_HARD’, ‘LINEAR’].
- cell_state_update_activation: str
Cell state update activation function used at the cell state update gate. [‘RELU’, ‘TANH’, ‘SIGMOID’, ‘SCALED_TANH’, ‘SIGMOID_HARD’, ‘LINEAR’].
- output_activation: str
Activation function used at the output gate. Can be one of the following option: [‘RELU’, ‘TANH’, ‘SIGMOID’, ‘SCALED_TANH’, ‘SIGMOID_HARD’, ‘LINEAR’].
- peep: [numpy.array] or None
List of peephole vectors. The ordering is [p_i, p_f, p_o], where p_i, p_f, and p_o are peephole vectors at input gate, forget gate, output gate. The shapes of the peephole vectors are (hidden_size,).
- output_all: boolean
Whether the LSTM layer should output at every time step.
If False, the output is the result after the final state update.
If True, the output is a sequence, containing outputs at all time steps.
- forget_bias: boolean
If True, a vector of 1s is added to forget gate bias.
- coupled_input_forget_gate: boolean
If True, the input gate and forget gate is coupled. i.e. forget gate is not used.
- cell_clip_threshold: float
The limit on the maximum and minimum values on the cell state. If not provided, it is defaulted to 50.0.
- reverse_input: boolean
Whether the LSTM layer should process the input sequence in the reverse order.
If False, the input sequence order is not reversed.
If True, the input sequence order is reversed.
See also
- add_upper_triangular(name, input_name, output_name, k=0)[source]
Add a upper_triangular layer to the model that copies a tensor setting everything outside upper triangular to zero. Refer to the
UpperTriangularLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The of input blob name of this layer.
- output_name: str
The output blob name of this layer.
- k: int, optional
Diagonal above which to zero elements, default: 0 (main diagonal), k < 0 is lower it and k > 0 is upper.
See also
- add_upsample(name, scaling_factor_h, scaling_factor_w, input_name, output_name, mode='NN', linear_upsample_mode='DEFAULT')[source]
Add an upsample layer to the model. Refer to the
UpsampleLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- scaling_factor_h: int or float
Scaling factor on the vertical direction. Float values only supported with
BILINEAR
andALIGN_CORNERS_*
.- scaling_factor_w: int or float
Scaling factor on the horizontal direction. Float values only supported with
BILINEAR
andALIGN_CORNERS_*
.- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
- mode: str
Overall interpolation mode. The following values are supported:
'NN'
: nearest neighbour'BILINEAR'
: bilinear interpolation
- linear_upsample_mode: str
Specifies the behavior for linear upsampling. Only valid when Interpolation Mode is
BILINEAR
.If input grid is
[0, Xin-1]
(corresponding to an input size ofXin
), and if the output size isXout
, then the grid points are sampled in the following manner:- ‘DEFAULT’:
spacing = (Xin-Xin/Xout) / (Xout-1)
grid_point[i] = min(Xin-1, max(0, i * spacing)), for i = 0,1,2,..,Xout-1
- ‘ALIGN_CORNERS_TRUE’:
spacing = (Xin-1) / (Xout-1)
grid_point[i] = min(Xin-1, max(0, i * spacing)), for i = 0,1,2,..,Xout-1
- ‘ALIGN_CORNERS_FALSE’:
spacing = Xin / Xout
grid_point[i] = min(Xin-1, max(0, i * spacing + 0.5 * spacing - 0.5)), for i = 0,1,2,..,Xout-1
See also
- add_where_broadcastable(name, input_names, output_name)[source]
Add a where_broadcastable layer to the model that returns the elements either from tensor x or tensor y, depending on the value in the condition tensor. Refer to the
WhereBroadcastableLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_names: list of str
The input blob names of this layer.
- output_name: str
The output blob name of this layer.
See also
- add_where_nonzero(name, input_name, output_name)[source]
Add a where_nonzero layer to the model that returns a tensor containing the indices of all non-zero elements of input tensor. Refer to the
WhereNonZeroLayerParams
message in the specification (NeuralNetwork.proto) for more details.- Parameters:
- name: str
The name of this layer.
- input_name: str
The input blob name of this layer.
- output_name: str
The output blob name of this layer.
See also
- inspect_conv_channels(layer_name)[source]
Prints the output and kernel channels of a convolution layer.
- inspect_innerproduct_channels(layer_name)[source]
Prints the output and kernel channels of an innerProduct layer.
- inspect_layers(last=-1, verbose=False)[source]
Prints the summary for last “last” number of layers.
- Parameters:
- last: int
The numbers of layers to inspect, starting from the last one.
- verbose: bool
Whether to display layer-specific parameters or not.
- make_updatable(trainables)[source]
Make the builder’s NeuralNetwork spec updatable.
- Parameters:
- trainables: list of str
List of layer names to be set trainable.
- set_categorical_cross_entropy_loss(name, input)[source]
Categorical Cross Entropy is used for single label categorization (only one category is applicable for each data point).
- Parameters:
- name: The name of the loss layer
- input: The name of the input
The
input
should be a vector of length N representing the distribution over N categories. This must be the output of a softmax.
Notes
\[Loss_ {CCE}(input, target) = -\sum_{i = 1} ^ {N}(target == i) log(input[i]) = - log(input[target])\]
- set_class_labels(class_labels, predicted_feature_name='classLabel', prediction_blob='')[source]
Set class labels to the model spec to make it a neural network classifier.
- Parameters:
- class_labels: list of int or list of str
A list of integers or strings that map the index of the output of a neural network to labels in a classifier.
- predicted_feature_name: str
Name of the output feature for the class labels exposed in the Core ML neural network classifier, defaults:
'classLabel'
.- prediction_blob: str
If provided, then this is the name of the neural network blob which generates the probabilities for each class label (typically the output of a softmax layer). If not provided, then the last output layer is assumed.
See also
- set_input(input_names, input_dims)[source]
Set the inputs of the network spec.
- Parameters:
- input_names: list of str
The input names of the network.
- input_dims: [tuple]
The input dimensions of the network. The ordering of
input_dims
is the same asinput_names
.
See also
Examples
# Set the neural network spec inputs to be 3 dimensional vector data1 and # 4 dimensional vector data2. >>> builder.set_input(input_names=['data1', 'data2'], input_dims=[(3,), (4,)])
- set_mean_squared_error_loss(name, input_feature=None)[source]
- input_feature: [(str, datatypes.Array)] or None
The input feature of the loss layer. Each feature is a
(name, array)
tuple, wherename
is the name of the model’s tensor our loss will be attached to, andarray
is adatatypes.Array
object describing the shape of that tensor. Both the name and the array’s shape must be provided in the tuple.
Examples
>>> feature = [('output_tensor', datatypes.Array((299, 299, 3)))]
- set_optional_input(input_idx, value=None, format='float')[source]
Marks given input as optional input. Optionally, sets default value for optional input if value is not
None
.- Parameters:
- input_idx: int
Index of input to be marked and fill with default value.
- value: int/double/float/None
Value to be fill as default value.
- format: str
Format of default value. Must be one of
'float'
,'double'
, or'int'
.
- set_output(output_names, output_dims)[source]
Set the outputs of the network spec.
- Parameters:
- output_names: list of str
The output names of the network.
- output_dims: [tuple]
The output dimensions of the network. The ordering of
output_dims
is the same asoutput_names
.
See also
Examples
# Set the neural network spec outputs to be 3 dimensional vector feature1 and # 4 dimensional vector feature2. >>> builder.set_output(output_names=['feature1', 'feature2'], output_dims=[(3,), (4,)])
- set_pre_processing_parameters(image_input_names=None, is_bgr=False, red_bias=0.0, green_bias=0.0, blue_bias=0.0, gray_bias=0.0, image_scale=1.0, image_format='NCHW')[source]
Add a pre-processing parameters layer to the neural network object.
- Parameters:
- image_input_names: list of str
Name of input blobs that are images
- is_bgr: boolean or dict()
Channel order for input blobs that are images. BGR if True else RGB. To specify a different value for each image input, provide a dictionary with input names as keys.
- red_bias: float or dict()
Image re-centering parameter (red channel)
- blue_bias: float or dict()
Image re-centering parameter (blue channel)
- green_bias: float or dict()
Image re-centering parameter (green channel)
- gray_bias: float or dict()
Image re-centering parameter (for grayscale images)
- image_scale: float or dict()
Value by which to scale the images.
- image_format: str
Image format, either ‘NCHW’ / ‘NHWC’
See also
- set_training_input(training_input)[source]
Set the training inputs of the network spec.
- Parameters:
- training_input: [tuple]
The training input names and type of the network.
Examples
# Set the neural network spec training inputs to be 3 dimensional vector for 'input' and # Double for 'target'. >>> builder.set_training_input([('input', datatypes.Array(3)), ('target', 'Double')])
neural_network.flexible_shape_utils
Utilities to annotate Neural Network Features with flexible shape information.
- class coremltools.models.neural_network.flexible_shape_utils.NeuralNetworkImageSize(height=None, width=None)[source]
An object representing a size for an image feature inside a neural network. Valid sizess for height and width are > 0.
- class coremltools.models.neural_network.flexible_shape_utils.NeuralNetworkImageSizeRange(height_range=None, width_range=None)[source]
An object representing a range of sizes for an image feature inside a neural network. Valid ranges for height and width are > 0. A “-1” upper bound value for either width or height represents an unbounded size for that dimension.
- class coremltools.models.neural_network.flexible_shape_utils.NeuralNetworkMultiArrayShape(channel=None, height=None, width=None)[source]
An object representing a shape for a multiArray feature in a neural network. Valid shapes must have have only the Channel [C] shape or the Channel, Height and Width [C, H, W] shapes populated
- class coremltools.models.neural_network.flexible_shape_utils.NeuralNetworkMultiArrayShapeRange(input_ranges=None)[source]
An object representing a range of shapes for a multiArray feature in a neural network. Valid shape ranges must have have only the Channel [C] range or the Channel, Height and Width [C, H, W] ranges populated. A “-1” value in an upper bound represents an unbounded range.
- coremltools.models.neural_network.flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name, sizes)[source]
Annotate an input or output image feature in a Neural Network spec to to accommodate a list of enumerated image sizes
- Parameters:
spec – MLModel The MLModel spec containing the feature
feature_name – str The name of the image feature for which to add size information. If the feature is not found in the input or output descriptions then an exception is thrown
sizes – [] | NeuralNetworkImageSize A single or a list of NeuralNetworkImageSize objects which encode valid size information for a image feature
Examples
>>> import coremltools >>> from coremltools.models.neural_network import flexible_shape_utils >>> spec = coremltools.utils.load_spec('mymodel.mlmodel') >>> image_sizes = [flexible_shape_utils.NeuralNetworkImageSize(128, 128)] >>> image_sizes.append(flexible_shape_utils.NeuralNetworkImageSize(256, 256)) >>> flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='my_multiarray_featurename', sizes=image_sizes)
- Returns:
None. The spec object is updated
- coremltools.models.neural_network.flexible_shape_utils.add_enumerated_multiarray_shapes(spec, feature_name, shapes)[source]
Annotate an input or output multiArray feature in a Neural Network spec to to accommodate a list of enumerated array shapes
- Parameters:
spec – MLModel The MLModel spec containing the feature
feature_name – str The name of the image feature for which to add shape information. If the feature is not found in the input or output descriptions then an exception is thrown
shapes – [] | NeuralNetworkMultiArrayShape A single or a list of NeuralNetworkImageSize objects which encode valid size information for a image feature
Examples
>>> import coremltools >>> from coremltools.models.neural_network import flexible_shape_utils >>> spec = coremltools.utils.load_spec('mymodel.mlmodel') >>> array_shapes = [flexible_shape_utils.NeuralNetworkMultiArrayShape(3)] >>> second_shape = flexible_shape_utils.NeuralNetworkMultiArrayShape() >>> second_shape.set_channel_shape(3) >>> second_shape.set_height_shape(10) >>> second_shape.set_width_shape(15) >>> array_shapes.append(second_shape) >>> flexible_shape_utils.add_enumerated_multiarray_shapes(spec, feature_name='my_multiarray_featurename', shapes=array_shapes)
- Returns:
None. The spec object is updated
- coremltools.models.neural_network.flexible_shape_utils.add_multiarray_ndshape_enumeration(spec, feature_name, enumerated_shapes)[source]
Annotate an input or output MLMultiArray feature in a Neural Network spec to accommodate a range of shapes. Add provided enumerated shapes to the list of shapes already present. This method is different from “add_enumerated_multiarray_shapes”, which is applicable for rank 5 mapping, SBCHW, arrays.
- Parameters:
spec – MLModel The MLModel spec containing the feature
feature_name – str The name of the feature for which to add shape range information. If the feature is not found in the input or output descriptions then an exception is thrown
enumerated_shapes – List[Tuple(int)] list of shapes, where each shape is specified as a tuple of integers.
Examples
>>> import coremltools >>> from coremltools.models.neural_network import flexible_shape_utils >>> spec = coremltools.utils.load_spec('mymodel.mlmodel') >>> # say, the default shape of "my_multiarray_featurename" is (2,3) >>> flexible_shape_utils.add_multiarray_ndshape_enumeration(spec, feature_name='my_multiarray_featurename', enumerated_shapes=[(2,4), (2,6)])
- Returns:
None. The spec is updated
- coremltools.models.neural_network.flexible_shape_utils.set_multiarray_ndshape_range(spec, feature_name, lower_bounds, upper_bounds)[source]
Annotate an input or output MLMultiArray feature in a Neural Network spec to accommodate a range of shapes. This is different from “update_multiarray_shape_range”, which works with rank 5 SBCHW mapping.
- Parameters:
spec – MLModel The MLModel spec containing the feature
feature_name – str The name of the feature for which to add shape range information. If the feature is not found in the input or output descriptions then an exception is thrown
lower_bounds – List[int] list of integers specifying the lower bounds of each dimension. Length must be same as the rank (length of shape) of the feature_name.
upper_bounds – List[int] list of integers specifying the upper bounds of each dimension. -1 corresponds to unbounded range. Length must be same as the rank (length of shape) of the feature_name.
Examples
>>> import coremltools >>> from coremltools.models.neural_network import flexible_shape_utils >>> spec = coremltools.utils.load_spec('mymodel.mlmodel') >>> # say, the default shape of "my_multiarray_featurename" is (2,3) >>> flexible_shape_utils.set_multiarray_ndshape_range(spec, feature_name='my_multiarray_featurename', lower_bounds=[1,2], upper_bounds=[10,-1])
- Returns:
None. The spec is updated
- coremltools.models.neural_network.flexible_shape_utils.update_image_size_range(spec, feature_name, size_range)[source]
Annotate an input or output Image feature in a Neural Network spec to to accommodate a range of image sizes
- Parameters:
spec – MLModel The MLModel spec containing the feature
feature_name – str The name of the Image feature for which to add shape information. If the feature is not found in the input or output descriptions then an exception is thrown
size_range – NeuralNetworkImageSizeRange A NeuralNetworkImageSizeRange object with the populated image size range information.
Examples
>>> import coremltools >>> from coremltools.models.neural_network import flexible_shape_utils >>> spec = coremltools.utils.load_spec('mymodel.mlmodel') >>> img_size_ranges = flexible_shape_utils.NeuralNetworkImageSizeRange() >>> img_size_ranges.add_height_range(64, 128) >>> img_size_ranges.add_width_range(128, -1) >>> flexible_shape_utils.update_image_size_range(spec, feature_name='my_multiarray_featurename', size_range=img_size_ranges)
- Returns:
None. The spec object is updated
- coremltools.models.neural_network.flexible_shape_utils.update_multiarray_shape_range(spec, feature_name, shape_range)[source]
Annotate an input or output MLMultiArray feature in a Neural Network spec to accommodate a range of shapes
- Parameters:
spec – MLModel The MLModel spec containing the feature
feature_name – str The name of the feature for which to add shape range information. If the feature is not found in the input or output descriptions then an exception is thrown
shape_range – NeuralNetworkMultiArrayShapeRange A NeuralNetworkMultiArrayShapeRange object with the populated shape range information. The shape_range object must either contain only shape information for channel or channel, height and width. If the object is invalid then an exception is thrown
Examples
>>> import coremltools >>> from coremltools.models.neural_network import flexible_shape_utils >>> spec = coremltools.utils.load_spec('mymodel.mlmodel') >>> shape_range = flexible_shape_utils.NeuralNetworkMultiArrayShapeRange() >>> shape_range.add_channel_range((1, 3)) >>> shape_range.add_width_range((128, 256)) >>> shape_range.add_height_range((128, 256)) >>> flexible_shape_utils.update_multiarray_shape_range(spec, feature_name='my_multiarray_featurename', shape_range=shape_range)
- Returns:
None. The spec is updated
neural_network.quantization_utils
Utilities to compress Neural Network Models. Only available in coremltools 2.0b1 and onwards
- class coremltools.models.neural_network.quantization_utils.AdvancedQuantizedLayerSelector(skip_layer_types=[], minimum_conv_kernel_channels=4, minimum_conv_weight_count=4096)[source]
Quantized layer selector allowing the user to specify some types of layers to skip during quantization process and the minimum size parameters in quantized convolution layers.
Examples
from coremltools.models.neural_network.quantization_utils import AdvancedQuantizedLayerSelector selector = AdvancedQuantizedLayerSelector( skip_layer_types=['batchnorm', 'bias', 'depthwiseConv'], minimum_conv_kernel_channels=4, minimum_conv_weight_count=4096) quantized_model = quantize_weights(model, 8, selector=selector)
- class coremltools.models.neural_network.quantization_utils.MatrixMultiplyLayerSelector(minimum_weight_count=1, minimum_input_channels=1, minimum_output_channels=1, maximum_input_channels=None, maximum_output_channels=None, include_layers_with_names=None)[source]
Layer selector object that allows users to select matrix multiplication layers with one of the matrices being constant, based on some criterions like total numbers of parameters/weights, number of input or output channels and/or layer names. If any of the criterion is not valid, the corresponding layer is not selected.
- class coremltools.models.neural_network.quantization_utils.ModelMetrics(spec)[source]
A utility class to hold evaluation metrics
- class coremltools.models.neural_network.quantization_utils.OutputMetric(name, type)[source]
Utility class to calculate and hold metrics between two model outputs
- class coremltools.models.neural_network.quantization_utils.QuantizedLayerSelector[source]
This is the base class to implement custom selectors to skip certain layers during quantization. To implement a custom selector, create a class that inherits this class and override do_quantize() method.
Examples
class MyLayerSelector(QuantizedLayerSelector): def __init__(self): super().__init__() def do_quantize(self, layer, **kwargs): ret = super().do_quantize(layer) if not ret or layer.name == 'dense_2': return False return True selector = MyLayerSelector() quantized_model = quantize_weights(mlmodel, 8, quantization_mode='linear', selector=selector)
- coremltools.models.neural_network.quantization_utils.activate_int8_int8_matrix_multiplications(spec, selector=None)[source]
Utility function that takes in either a full precision (float) spec or an nbit quantized spec to selectively enable int8 activation + weight quantization of matrix multiplication operations where the second matrix represents a constant weight.
- spec: MLModel.get_spec()
Currently conversion for only neural network models is supported. If a pipeline model is passed in then all embedded neural network models embedded within will be modified.
- selector: (optional) MatrixMultiplyLayerSelector
A MatrixMultiplyLayerSelector object that enables int8 activation + weight quantization only on those layers for which the user-specified criterion on the minimum/maximum number of size/channels in constant weight parameters is met. It can also be derived to provide custom selection.
- coremltools.models.neural_network.quantization_utils.compare_models(full_precision_model, quantized_model, sample_data)[source]
Utility function to compare the performance of a full precision vs quantized model
- full_precision_model: MLModel
The full precision model with float32 weights
- quantized_model: MLModel
Quantized version of the model with quantized weights
- sample_data: str | [dict]
Data used to characterize performance of the quantized model in comparison to the full precision model. Either a list of sample input dictionaries or an absolute path to a directory containing images. Path to a directory containing images is only valid for models with one image input. For all other models a list of sample inputs must be provided.
- Returns:
None. Performance metrics are printed out
- coremltools.models.neural_network.quantization_utils.quantize_weights(full_precision_model, nbits, quantization_mode='linear', sample_data=None, **kwargs)[source]
Utility function to convert a full precision (float) MLModel to a nbit quantized MLModel (float16).
- full_precision_model: MLModel
Model which will be converted to half precision. Currently conversion for only neural network models is supported. If a pipeline model is passed in then all embedded neural network models embedded within will be converted.
- nbits: int
- Number of bits per quantized weight. Only 16-bit float point and
1-8 bit is supported
- quantization_mode: str
One of the following:
- “linear”:
Linear quantization with scale and bias assuming the range of weight values is [A, B], where A = min(weight), B = max(weight)
- “linear_lut”:
Simple linear quantization represented as a lookup table
- “kmeans_lut”:
LUT based quantization, where LUT is generated by K-Means clustering
- “custom_lut”:
LUT quantization where LUT and quantized weight params are calculated using a custom function. If this mode is selected then a custom function must be passed in kwargs with key lut_function. The function must have input params (nbits, wp) where nbits is the number of quantization bits and wp is the list of weights for a given layer. The function should return two parameters (lut, qw) where lut is an array of length (2^n bits)containing LUT values and qw is the list of quantized weight parameters. See
_get_linear_lookup_table_and_weight
for a sample implementation.- “linear_symmetric”:
Linear quantization with scale and bias assuming the range of weight values is [-A, A], where A = max(abs(weight)).
- sample_data: str | [dict]
Data used to characterize performance of the quantized model in comparison to the full precision model. Either a list of sample input dictionaries or an absolute path to a directory containing images. Path to a directory containing images is only valid for models with one image input. For all other models a list of sample inputs must be provided.
- kwargs: keyword arguments
- lut_function(
callable function
) A callable function provided when quantization mode is set to
_QUANTIZATION_MODE_CUSTOM_LOOKUP_TABLE
. Seequantization_mode
for more details.- selector: QuantizedLayerSelector
A QuanatizedLayerSelector object that can be derived to provide custom quantization selection.
- lut_function(
- Returns:
- model: MLModel
The quantized MLModel instance if running on macOS 10.14 or later, otherwise the quantized model specification is returned
Examples
>>> import coremltools >>> from coremltools.models.neural_network import quantization_utils >>> model = coremltools.models.MLModel('my_model.mlmodel') >>> quantized_model = quantization_utils.quantize_weights(model, 8, "linear")
neural_network.update_optimizer_utils
Neural Network optimizer utilities.
- class coremltools.models.neural_network.update_optimizer_utils.AdamParams(lr=0.01, batch=10, beta1=0.9, beta2=0.999, eps=1e-08)[source]
Adam - A Method for Stochastic Optimization.
- Attributes:
- lr: float
The learning rate that controls learning step size. Adjustable in progress, default: 0.01.
- batch: int
The mini-batch size, number of examples used to compute single gradient step, default: 10.
- beta1: float
Controls the exponential decay rate for the first moment estimates, default: 0.9.
- beta2: float
Controls the exponential decay rate for the second moment estimates, default: 0.999.
- eps: float
The epsilon, a very small number to prevent any division by zero in the implementation, default: 1e-8.
Methods
set_lr(value, min, max)
Set value for learning rate.
set_batch(value, allow_set)
Set value for batch size.
set_beta1(value, min, max)
Set value for beta1.
set_beta2(value, min, max)
Set value for beta2.
set_eps(value, min, max)
Set value for epsilon.
- class coremltools.models.neural_network.update_optimizer_utils.Batch(value, allowed_set=None)[source]
Batch optimizer.
- Attributes:
- value: float
- allowed_set: float
- class coremltools.models.neural_network.update_optimizer_utils.RangeParam(value, min=0, max=1)[source]
Range Parameter optimizer.
- Attributes:
- value: float
- min: float
- max: float
- class coremltools.models.neural_network.update_optimizer_utils.SgdParams(lr=0.01, batch=10, momentum=0)[source]
SGD - Stochastic Gradient Descent optimizer.
- Attributes:
- lr: float
The learning rate that controls learning step size. Adjustable in progress, default: 0.01.
- batch: int
The mini-batch size, number of examples used to compute single gradient step, default: 10.
- momentum: float
The momentum factor that helps accelerate gradients vectors in the right direction, default 0.
Methods
set_lr(value, min, max)
Set value for learning rate.
set_batch(value, allow_set)
Set value for batch size.
set_momentum(value, min, max)
Set value for momentum.