Source code for cvnets.layers.normalization.group_norm

#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2023 Apple Inc. All Rights Reserved.
#

from typing import Optional

from torch import Tensor, nn

from cvnets.layers.normalization import register_norm_fn


[docs]@register_norm_fn(name="group_norm") class GroupNorm(nn.GroupNorm): """ Applies a `Group Normalization <https://arxiv.org/abs/1803.08494>`_ over an input tensor Args: num_groups (int): number of groups to separate the input channels into num_features (int): :math:`C` from an expected input of size :math:`(N, C, *)` eps (Optional, float): Value added to the denominator for numerical stability. Default: 1e-5 affine (bool): If ``True``, use learnable affine parameters. Default: ``True`` Shape: - Input: :math:`(N, C, *)` where :math:`N` is the batch size, :math:`C` is the number of input channels, and :math:`*` is the remaining dimensions of the input tensor - Output: same shape as the input .. note:: GroupNorm is the same as LayerNorm when `num_groups=1` and it is the same as InstanceNorm when `num_groups=C`. """
[docs] def __init__( self, num_groups: int, num_features: int, eps: Optional[float] = 1e-5, affine: Optional[bool] = True, *args, **kwargs ) -> None: super().__init__( num_groups=num_groups, num_channels=num_features, eps=eps, affine=affine )