#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2023 Apple Inc. All Rights Reserved.
#
import argparse
from typing import Optional
from cvnets.misc.common import freeze_modules_based_on_opts, load_pretrained_model
from cvnets.models.base_model import BaseAnyNNModel
from utils import logger
from utils.download_utils import get_local_path
from utils.registry import Registry
MODEL_REGISTRY = Registry(
registry_name="model_registry",
base_class=BaseAnyNNModel,
lazy_load_dirs=["cvnets/models"],
internal_dirs=["internal", "internal/projects/*"],
)
[docs]def get_model(
opts: argparse.Namespace,
category: Optional[str] = None,
model_name: Optional[str] = None,
*args,
**kwargs,
) -> BaseAnyNNModel:
"""Create a task-specific model from command-line arguments. If model category (or task) and name are
passed as an argument, then they are used. Otherwise, `dataset.category` and `model.{category}.name` are
read from command-line arguments to read model category and name, respectively.
Args:
opts: Command-line arguments
category: Category or task (e.g., segmentation)
model_name: Model name for a specific task (e.g., vit for classification)
Returns:
An instance of `cvnets.models.BaseAnyNNModel`.
"""
if category is None:
category = getattr(opts, "dataset.category")
if model_name is None:
model_name = getattr(opts, f"model.{category}.name")
if model_name == "__base__":
# __base__ is used to register the task-specific base classes. These classes often
# provide functionalities that can be re-used by sub-classes, but does not provide
# task-specific models.
logger.error(
f"For {category} task, model name can't be __base__. Please check."
)
model = MODEL_REGISTRY[model_name, category].build_model(opts, *args, **kwargs)
# for some categories, we do not have pre-trained path (e.g., segmentation_head).
# Therefore, we need to set the default value.
pretrained_wts_path = getattr(opts, f"model.{category}.pretrained", None)
if pretrained_wts_path is not None:
pretrained_model_path = get_local_path(opts, path=pretrained_wts_path)
model = load_pretrained_model(
model=model, wt_loc=pretrained_model_path, opts=opts
)
model = freeze_modules_based_on_opts(opts, model)
return model
[docs]def arguments_model(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser = BaseAnyNNModel.add_arguments(parser=parser)
parser = MODEL_REGISTRY.all_arguments(parser=parser)
return parser