Source code for data.datasets.classification.base_imagenet_shift_dataset

#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2023 Apple Inc. All Rights Reserved.
#
"""Base class for ImageNet distribution shift datasets."""
import argparse
from typing import Any, Dict, Tuple

from data.datasets.classification.base_image_classification_dataset import (
    BaseImageClassificationDataset,
)


[docs]class BaseImageNetShiftDataset(BaseImageClassificationDataset): """ImageNet Distribution Shift Dataset. This base class supports ImageNet out-of-distribution datasets. The class names for datasets are a subset of ImageNet. The `__getitem__` method projects the labels to the classes of ImageNet to allow zero-shot evaluation. Args: opts: An argparse.Namespace instance. """
[docs] def __init__( self, opts: argparse.Namespace, *args, **kwargs, ) -> None: """Initialize BaseImageNetShiftDataset.""" BaseImageClassificationDataset.__init__( self, opts=opts, *args, **kwargs, ) # The class ids are converted to their equivalent ImageNet class ids # We manually set the n_classes and overwrite the n_classes set by # ImageFolder self.n_classes = 1000 # TODO: remove setattr when BaseImageClassificationDataset removes it setattr(opts, "model.classification.n_classes", self.n_classes) self.post_init_checks()
[docs] def post_init_checks(self) -> None: """Verify the dataset is correctly initialized. Also called in testing.""" if self.is_training: raise Exception( "{} can only be used for evaluation".format(self.__class__.__name__) )
[docs] @staticmethod def class_id_to_imagenet_class_id(class_id: int) -> int: """Return the corresponding class index from ImageNet given a class index.""" raise NotImplementedError( "Subclasses should implement the mapping to imagenet class ids." )
def __getitem__( self, sample_size_and_index: Tuple[int, int, int] ) -> Dict[str, Any]: """Return the sample corresponding to the input sample index. Returned sample is transformed into the size specified by the input. Args: sample_size_and_index: Tuple of the form (crop_size_h, crop_size_w, sample_index) Returns: A dictionary with `samples`, `sample_id` and `targets` as keys corresponding to input, index and label of a sample, respectively. Shapes: The output data dictionary contains three keys (samples, sample_id, and target). The values of these keys has the following shapes: data["samples"]: Shape is [Channels, Height, Width] data["sample_id"]: Shape is 1 data["targets"]: Shape is 1 """ data = BaseImageClassificationDataset.__getitem__(self, sample_size_and_index) data["targets"] = self.class_id_to_imagenet_class_id(data["targets"]) return data