Source code for data.datasets.detection.coco_base

#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2023 Apple Inc. All Rights Reserved.
#

import argparse
import os
from typing import Any, Dict, List, Mapping, Optional, Tuple, Union

import numpy as np
import torch
from pycocotools import mask as coco_mask
from pycocotools.coco import COCO
from torch import Tensor

from data.datasets import DATASET_REGISTRY
from data.datasets.detection.base_detection import BaseDetectionDataset
from data.transforms import image_pil as T
from data.transforms.common import Compose
from utils import logger


[docs]@DATASET_REGISTRY.register(name="coco", type="detection") class COCODetection(BaseDetectionDataset): """Base class for the MS COCO Object Detection Dataset. Sub-classes should implement training and validation transform functions. Args: opts: command-line arguments .. note:: This class implements basic functions (e.g., reading image and annotations), and does not implement training/validation transforms. Detector specific sub-classes should extend this class and implement those methods. See `coco_ssd.py` as an example for SSD. """
[docs] def __init__( self, opts, *args, **kwargs, ) -> None: super().__init__(opts=opts, *args, **kwargs) split = "train" if self.is_training else "val" year = 2017 ann_file = os.path.join( self.root, "annotations/instances_{}{}.json".format(split, year) ) # disable printing, so that pycocotools print statements are not printed logger.disable_printing() self.coco = COCO(ann_file) self.img_dir = os.path.join(self.root, "images/{}{}".format(split, year)) self.ids = ( list(self.coco.imgToAnns.keys()) if self.is_training else list(self.coco.imgs.keys()) ) coco_categories = sorted(self.coco.getCatIds()) background_idx = 0 if getattr(opts, "dataset.detection.no_background_id") else 1 self.coco_id_to_contiguous_id = { coco_id: i + background_idx for i, coco_id in enumerate(coco_categories) } self.contiguous_id_to_coco_id = { v: k for k, v in self.coco_id_to_contiguous_id.items() } self.num_classes = len(self.contiguous_id_to_coco_id.keys()) + background_idx # enable printing logger.enable_printing() setattr(opts, "model.detection.n_classes", self.num_classes)
[docs] def share_dataset_arguments(self) -> Dict[str, Any]: """Returns the number of classes in detection dataset along with super-class arguments.""" share_dataset_specific_opts: Dict[str, Any] = super().share_dataset_arguments() share_dataset_specific_opts["model.detection.n_classes"] = self.num_classes return share_dataset_specific_opts
[docs] @classmethod def add_arguments(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser: if cls != COCODetection: # Don't re-register arguments in subclasses that don't override `add_arguments()`. return parser group = parser.add_argument_group(title=cls.__name__) group.add_argument( "--dataset.detection.no-background-id", action="store_true", default=False, help="Do not include background id in detection class labels. Defaults to False.", ) return parser
def _evaluation_transforms( self, size: tuple, *args, **kwargs ) -> T.BaseTransformation: """Evaluation or Inference transforms (Resize (Optional) --> Tensor). .. note:: Resizing the input to the same resolution as the detector's input is not enabled by default. It can be enabled by passing **--evaluation.detection.resize-input-images** flag. """ aug_list = [] if getattr(self.opts, "evaluation.detection.resize_input_images"): aug_list.append(T.Resize(opts=self.opts, img_size=size)) aug_list.append(T.ToTensor(opts=self.opts)) return Compose(opts=self.opts, img_transforms=aug_list) def __getitem__( self, sample_size_and_index: Tuple[int, int, int], *args, **kwargs ) -> Mapping[str, Union[Tensor, Mapping[str, Tensor]]]: """Returns the sample corresponding to the input sample index. Returned sample is transformed into the size specified by the input. Args: sample_size_and_index: Tuple of the form (crop_size_h, crop_size_w, sample_index) Returns: A dictionary with `samples` and `targets` as keys corresponding to input and labels of a sample, respectively. Shapes: The shape of values in output dictionary, output_data, are as follows: output_data["samples"]["image"]: Shape is [Channels, Height, Width] output_data["targets"]["box_labels"]: Shape is [Num of boxes] output_data["targets"]["box_coordinates"]: Shape is [Num of boxes, 4] output_data["targets"]["image_id"]: Shape is [1] output_data["targets"]["image_width"]: Shape is [1] output_data["targets"]["image_height"]: Shape is [1] """ crop_size_h, crop_size_w, img_index = sample_size_and_index transform_fn = self.get_augmentation_transforms(size=(crop_size_h, crop_size_w)) image_id = self.ids[img_index] image, img_name = self.get_image(image_id=image_id) im_width, im_height = image.size boxes, labels, mask = self.get_boxes_and_labels( image_id=image_id, image_width=im_width, image_height=im_height, include_masks=True, ) data = { "image": image, "box_labels": labels, "box_coordinates": boxes, "mask": mask, } if transform_fn is not None: data = transform_fn(data) output_data = { "samples": { "image": data["image"], }, "targets": { "box_labels": data["box_labels"], "box_coordinates": data["box_coordinates"], "mask": data["mask"], "image_id": torch.tensor(image_id), "image_width": torch.tensor(im_width), "image_height": torch.tensor(im_height), }, } return output_data def __len__(self): return len(self.ids)
[docs] def get_boxes_and_labels( self, image_id: int, image_width: int, image_height: int, *args, include_masks=False, **kwargs, ) -> Tuple[np.ndarray, np.ndarray, Optional[np.ndarray]]: """Get the boxes and label information for a given image_id Args: image_id: Image ID image_width: Width of the image image_height: Height of the image include_masks: Return instance masks or not Returns: A tuple of length 3: * Numpy array containing bounding box information in xyxy format. The shape of array is [Num_of_boxes, 4]. * Numpy array containing labels for each of the box. The shape of array is [Num_of_boxes] * When include_masks is enabled, a numpy array of instance masks is returned. The shape of the array is [Num_of_boxes, image_height, image_width] """ ann_ids = self.coco.getAnnIds(imgIds=image_id) ann = self.coco.loadAnns(ann_ids) # filter crowd annotations ann = [obj for obj in ann if obj["iscrowd"] == 0] boxes = np.array( [self._xywh2xyxy(obj["bbox"], image_width, image_height) for obj in ann], np.float32, ).reshape((-1, 4)) labels = np.array( [self.coco_id_to_contiguous_id[obj["category_id"]] for obj in ann], np.int64, ).reshape((-1,)) # remove invalid boxes keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] labels = labels[keep] masks = None if include_masks: masks = [] for obj in ann: rle = coco_mask.frPyObjects( obj["segmentation"], image_height, image_width ) m = coco_mask.decode(rle) if len(m.shape) < 3: mask = m.astype(np.uint8) else: mask = (np.sum(m, axis=2) > 0).astype(np.uint8) masks.append(mask) if len(masks) > 0: masks = np.stack(masks, axis=0) else: masks = np.zeros(shape=(0, image_height, image_width), dtype=np.uint8) masks = masks.astype(np.uint8) masks = torch.from_numpy(masks) masks = masks[keep] assert len(boxes) == len(labels) == len(masks) return boxes, labels, masks else: return boxes, labels, None
def _xywh2xyxy( self, box: List[int], image_width: int, image_height: int ) -> List[int]: """Convert boxes from xywh format to xyxy format""" x1, y1, w, h = box return [ max(0, x1), max(0, y1), min(x1 + w, image_width), min(y1 + h, image_height), ]
[docs] def get_image(self, image_id: int) -> Tuple: """Return the PIL image for a given image id""" file_name = self.coco.loadImgs(image_id)[0]["file_name"] image_file = os.path.join(self.img_dir, file_name) image = self.read_image_pil(image_file) return image, file_name
[docs] def extra_repr(self) -> str: return super().extra_repr() + f"\n\t num_classes={self.num_classes}"
[docs] @staticmethod def class_names() -> List[str]: """Name of the classes in the COCO dataset""" return [ "background", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", ]