Source code for data.datasets.multi_modal_img_text.img_text_tar_dataset

#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2023 Apple Inc. All Rights Reserved.
#

import argparse
import glob
import io
import os
import pickle
import tarfile
from multiprocessing.pool import Pool
from typing import AnyStr, Dict, Tuple

import numpy as np
import torch
from PIL import Image, ImageFile

from data.datasets import DATASET_REGISTRY
from data.datasets.multi_modal_img_text.base_multi_modal_img_text import (
    BaseMultiModalImgText,
)
from utils import logger, resources
from utils.ddp_utils import dist_barrier
from utils.download_utils import get_local_path

# To enable reading truncated images, we update the default values of following variables in PIL
Image.MAX_IMAGE_PIXELS = None
ImageFile.LOAD_TRUNCATED_IMAGES = True


[docs]def extract_content(tar_file: tarfile.TarFile, file_name: str) -> AnyStr: """Extract the context of a particular file inside a tar file and returns it.""" f = tar_file.extractfile(file_name) return f.read()
[docs]def decode_image(byte_data) -> Image.Image: """Reads the byte image data and returns the PIL image.""" return Image.open(io.BytesIO(byte_data)).convert("RGB")
[docs]def decode_text(byte_data) -> str: """Reads the byte text data and returns the decoded string.""" return byte_data.decode("utf-8")
[docs]def async_download_file_from_s3( opts: argparse.Namespace, tar_file_name: str, cache_loc: str, *args, **kwargs ) -> None: """Helper function to download the files asynchronously from S3. Args: opts: command-line arguments tar_file_name: Name of the tar file cache_loc: Caching location on the local machine """ # async download files form s3 local_path = get_local_path( opts=opts, path=tar_file_name, cache_loc=cache_loc, quiet_download=True, force_delete=False, use_start_rank=False, sync_ranks=False, ) # now extract the tar file and save the content as each separate file folder_name = local_path.replace(".tar.gz", "") with tarfile.open(local_path, "r:gz") as tar_file: tar_file.extractall(folder_name) # delete the tar file, to save space if os.path.isfile(local_path): os.remove(local_path)
[docs]@DATASET_REGISTRY.register(name="img_text_tar", type="multi_modal_image_text") class ImgTextTarDataset(BaseMultiModalImgText): """ImgTextTarDataset class for datasets that store Image-Text pairs as tar files, each tar file with multiple pairs. The dataset should be stored in following format where `img_text_tar_dataset` is the location of directory that has all tar files. img_text_tar_dataset |--- 00000000_0_1000.tar.gz |-------- 00000000_0_image |-------- 00000000_0_text |-------- 00000000_1_image |-------- 00000000_1_text |-------- ... |--- 00000000_1000_2000.tar.gz |-------- 00000000_1000_image |-------- 00000000_1000_text |-------- 00000000_1001_image |-------- 00000000_1001_text |-------- ... Args: opts: An argparse.Namespace instance. """ # Number of files in node i that overlaps (or same) with files in node i+1. __OVERLAP_RATIO = 10 # TAR File extension __FILE_EXTN = ".tar.gz"
[docs] def __init__( self, opts, *args, **kwargs, ) -> None: super().__init__( opts=opts, *args, **kwargs, ) self.zeros_shot_dataset = self.get_zero_shot_dataset() if self.is_training: dataset_metadata = self.get_dataset() total_files = 0 if -1 in dataset_metadata.keys(): # At key=-1, we store the information about total files. total_files = dataset_metadata.pop(-1) if total_files == 0: logger.error( "Total files can't be 0. Please check if metadata has key -1, which stores " "the total number of files" ) self.dataset: Dict = dataset_metadata self.total_pairs = total_files self.dataset_keys = list(self.dataset.keys()) s3_bucket_path = getattr( self.opts, "dataset.multi_modal_img_text.img_text_tar.s3_bucket_path" ) if s3_bucket_path is None: if self.is_master_node: logger.log( "{} needs the path of AWS bucket where data is stored.".format( self.__class__.__name__ ) ) self.s3_bucket_path = s3_bucket_path self._download_dataset()
[docs] def get_dataset(self, *args, **kwargs) -> Dict[str, str]: """Reads the metadata file and returns a mapping of indices of files stored in a tar file and its name""" if self.is_training: # read metadata file # metadata file is a dictionary storing the start image-text ids along with the tar file name. # Example {'0-18000': 'file_1.tar', 18000-29000', 'file_2.tar'} metadata_file_loc = getattr( self.opts, "dataset.multi_modal_img_text.img_text_tar.metadata_file", ) if metadata_file_loc is None: if self.is_master_node: logger.error( "Please specify metadata file using " "--dataset.multi-modal-img-text.img_text_tar.metadata-file for {}".format( self.__class__.__name__ ) ) metadata_file_local_path = get_local_path( self.opts, path=metadata_file_loc, force_delete=False ) with open(metadata_file_local_path, "rb") as fp: metadata = pickle.load(fp) return metadata else: return {}
def _download_dataset(self) -> None: """Download the dataset""" os.makedirs(self.cache_loc, exist_ok=True) # The total number of GPUs that a task is using is equal to the world size world_size = getattr(self.opts, "ddp.world_size") if world_size is None or world_size == -1: if self.is_start_rank_node: logger.error("DDP world size should be greater than 1. Got: {}") # find the number of GPUs in each node n_gpus_per_node = torch.cuda.device_count() # Total number of GPUs = Total number of nodes * number of GPUs per Node n_nodes = max(1, world_size // n_gpus_per_node) # Find the node id based on current node rank # node_id = current_node_rank / n_gpus_per_node curr_node_rank = getattr(self.opts, "ddp.rank", None) if curr_node_rank is None: if self.is_start_rank_node: logger.error("Node rank can't be None.") node_id = curr_node_rank // n_gpus_per_node # Downloading the entire dataset on each node is not feasible. Instead, for each # node, we will download a subset of the dataset and learn from it. # Split the dataset almost equally among all nodes. The length of this split # is going to be the same as the number of nodes. node_wise_dataset_split = np.array_split(self.dataset_keys, n_nodes) # download files corresponding to ith node files_node_i = node_wise_dataset_split[node_id] # Dataset is organized as a dict where key corresponds to start_index of image-text pair and # value corresponds to the file name. # find the start and end image-text pair indexes for node_i. # Note that we overlap node_i and node_i+1 by at most __OVERLAP_RATIO files start_idx_node_i = max( 0, self.dataset_keys.index(files_node_i[0]) - self.__OVERLAP_RATIO ) end_idx_node_i = min( len(self.dataset_keys), self.dataset_keys.index(files_node_i[-1]) + self.__OVERLAP_RATIO, ) # Now, download the files concurrently using each rank on node i # Now, download the files concurrently using each rank on node i indexes_to_download_node_i = self.dataset_keys[start_idx_node_i:end_idx_node_i] indexes_to_download_node_i_rank_j = np.array_split( indexes_to_download_node_i, n_gpus_per_node ) total_files_to_download = len(indexes_to_download_node_i) if self.is_start_rank_node: logger.log(f"Starting to downloading {total_files_to_download} files") current_device = torch.cuda.current_device() if getattr( self.opts, "dataset.multi_modal_img_text.img_text_tar.parallel_download", False, ): # download concurrently using many workers for each rank n_cpus = resources.cpu_count() n_process_per_gpu = max( 1, n_cpus // torch.cuda.device_count() ) # max(1, min(4, n_cpus // torch.cuda.device_count())) with Pool(processes=n_process_per_gpu) as pool: pool.starmap( async_download_file_from_s3, [ ( self.opts, os.path.join( self.s3_bucket_path, self.dataset[img_text_idx] ), self.cache_loc, ) for img_text_idx in indexes_to_download_node_i_rank_j[ current_device ] ], ) else: # download sequentially (1 worker per rank) for count, img_text_idx in enumerate( indexes_to_download_node_i_rank_j[current_device] ): # Recall that dataset is organized as a dict where key corresponds to start_index of image-text pair # value corresponds to the tar file name. async_download_file_from_s3( opts=self.opts, tar_file_name=os.path.join( self.s3_bucket_path, self.dataset[img_text_idx] ), cache_loc=self.cache_loc, ) if count % 100 == 0 and self.is_start_rank_node: n_files_downloaded = len(glob.glob(f"{self.cache_loc}/*")) print( f"Progress: {n_files_downloaded}/{total_files_to_download}", end="\r", ) # synchronize between all DDP jobs if getattr(self.opts, "ddp.use_distributed", False): dist_barrier() if self.is_start_rank_node: n_files_downloaded = len(glob.glob(f"{self.cache_loc}/*")) logger.log( f"Download complete ({n_files_downloaded}/{total_files_to_download}). " f"Files are stored at: {self.cache_loc}" ) def __len__(self) -> int: if self.zeros_shot_dataset is not None: return len(self.zeros_shot_dataset) return self.total_pairs
[docs] @classmethod def add_arguments(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser: """Add dataset-specific arguments to the parser.""" if cls != ImgTextTarDataset: # Don't re-register arguments in subclasses that don't override `add_arguments()`. return parser group = parser.add_argument_group(title=cls.__name__) group.add_argument( "--dataset.multi-modal-img-text.img-text-tar.metadata-file", type=str, default=None, help="Location of the metadata file storing information about file indices and corresponding tar files. " "Defaults to None.", ) group.add_argument( "--dataset.multi-modal-img-text.img-text-tar.s3-bucket-path", type=str, default=None, help="Path of the s3 bucket where data is stored.", ) group.add_argument( "--dataset.multi-modal-img-text.img-text-tar.parallel-download", action="store_true", default=False, help="Download the data in parallel on each rank of the DDP process. Defaults to False.", ) return parser
[docs] def get_dataset_pair(self, img_index: int) -> Tuple[Image.Image, str, int]: """For a given image index, read the image file, corresponding caption, and class label. If class label is not present, -1 is returned. """ class_label = -1 try: if img_index in self.dataset_keys: # file index is the same as the start index file_index = self.dataset_keys.index(img_index) # data index is 0 because file index is one of the start indices data_index = 0 img_text_pair_id = self.dataset_keys[file_index] else: # find the index at which the element will be inserted. # Example: If we have an array of start indices as [0, 15, 35, 90] and # we want to find the position of image index 92, then the insertion index will be 4. insertion_idx = np.searchsorted(self.dataset_keys, img_index) # the image id corresponding to 92 is stored in file whose start index is 90. # So, the file index is one less than insertion index file_index = insertion_idx - 1 img_text_pair_id = self.dataset_keys[file_index] # data index is delta between current value (92) and value at file index (90) data_index = img_index - img_text_pair_id # get the key corresponding to file index and retrieve the file name # concatenate the file name with cache location path tar_file_name_from_metadata = self.dataset[img_text_pair_id] tar_file_name = os.path.join(self.cache_loc, tar_file_name_from_metadata) # Tar file name is encoded as: <path>/<folder_start_end.tar.gz> # each file name in tar file is encoded as: <folder_dataIdx_image> and <folder_dataIdx_text> # remove the tar extension because we have extracted the data when downloaded tar_file_name = tar_file_name.replace(self.__FILE_EXTN, "") if not os.path.isdir(tar_file_name): async_download_file_from_s3( opts=self.opts, tar_file_name=os.path.join( self.s3_bucket_path, tar_file_name_from_metadata ), cache_loc=self.cache_loc, ) # Based on this, decode the folder information folder_name = tar_file_name.split(os.sep)[-1].split("_")[0] # adjust the data index with start_id offset start_id = tar_file_name.split(os.sep)[-1].split("_")[1] data_index = data_index + int(start_id) img_text_fname = f"{tar_file_name}/{folder_name}_{data_index}" with open(f"{img_text_fname}_image", "rb") as img_byte_data: input_img = decode_image(img_byte_data.read()) with open(f"{img_text_fname}_text", "rb") as text_byte_data: captions_str = decode_text(text_byte_data.read()) except Exception as e: logger.log("error loading {}. Error message: {}".format(img_index, str(e))) input_img = None captions_str = None return input_img, captions_str, class_label