#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2023 Apple Inc. All Rights Reserved.
#
import argparse
from numbers import Number
from typing import Dict, Union
import numpy as np
from torch import Tensor
from torch.nn import functional as F
from metrics import METRICS_REGISTRY
from metrics.metric_base import EpochMetric
from utils import logger
[docs]@METRICS_REGISTRY.register("prob_hist")
class ProbabilityHistogramMetric(EpochMetric):
[docs] def __init__(
self,
opts: argparse.Namespace = None,
is_distributed: bool = False,
pred: str = None,
target: str = None,
):
super().__init__(opts, is_distributed, pred, target)
self.num_bins = getattr(self.opts, "stats.metrics.prob_hist.num_bins")
[docs] @classmethod
def add_arguments(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
"""Add metric specific arguments"""
if cls == ProbabilityHistogramMetric:
parser.add_argument(
"--stats.metrics.prob-hist.num-bins", type=int, default=10
)
return parser
[docs] def compute_with_aggregates(
self, y_pred: Tensor, y_true: Tensor
) -> Union[Number, Dict[str, Number]]:
y_pred = F.softmax(y_pred, dim=-1).numpy()
y_true = y_true.numpy()
max_confs = y_pred.max(axis=-1)
max_hist = np.histogram(max_confs, bins=self.num_bins, range=[0, 1])[0]
max_hist = max_hist / max_hist.sum()
target_confs = np.take_along_axis(y_pred, y_true.reshape(-1, 1), 1)
target_hist = np.histogram(target_confs, bins=self.num_bins, range=[0, 1])[0]
target_hist = target_hist / target_hist.sum()
return {
"max": max_hist.tolist(),
"target": target_hist.tolist(),
}