Source code for optim.scheduler.fixed

#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2023 Apple Inc. All Rights Reserved.
#

import argparse

from optim.scheduler import SCHEDULER_REGISTRY
from optim.scheduler.base_scheduler import BaseLRScheduler


[docs]@SCHEDULER_REGISTRY.register("fixed") class FixedLRScheduler(BaseLRScheduler): """ Fixed learning rate scheduler with optional linear warm-up strategy """
[docs] def __init__(self, opts, **kwargs) -> None: is_iter_based = getattr(opts, "scheduler.is_iteration_based", True) super(FixedLRScheduler, self).__init__(opts=opts) max_iterations = getattr(opts, "scheduler.max_iterations", 150000) self.fixed_lr = getattr(opts, "scheduler.fixed.lr", None) assert self.fixed_lr is not None if self.warmup_iterations > 0: self.warmup_step = ( self.fixed_lr - self.warmup_init_lr ) / self.warmup_iterations self.period = ( max_iterations - self.warmup_iterations + 1 if is_iter_based else getattr(opts, "scheduler.max_epochs", 350) ) self.is_iter_based = is_iter_based
[docs] @classmethod def add_arguments(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser: group = parser.add_argument_group( title="Fixed LR arguments", description="Fixed LR arguments" ) group.add_argument( "--scheduler.fixed.lr", type=float, default=None, help="LR value" ) return parser
[docs] def get_lr(self, epoch: int, curr_iter: int) -> float: if curr_iter < self.warmup_iterations: curr_lr = self.warmup_init_lr + curr_iter * self.warmup_step else: curr_lr = self.fixed_lr return max(0.0, curr_lr)
def __repr__(self) -> str: repr_str = "{}(".format(self.__class__.__name__) repr_str += "\n\tlr={}".format(self.fixed_lr) if self.warmup_iterations > 0: repr_str += "\n\twarmup_init_lr={}\n\twarmup_iters={}".format( self.warmup_init_lr, self.warmup_iterations ) repr_str += "\n )" return repr_str