# Training ResNets on the ImageNet dataset Single node 8-GPU training of `ResNet-50` with `simple training recipe` can be done using below command: ``` export CFG_FILE="config/classification/imagenet/resnet.yaml" cvnets-train --common.config-file $CFG_FILE --common.results-loc classification_results ``` For advanced training recipe, see [this](../../../../../config/classification/imagenet/resnet_adv.yaml) configuration file. ***Note***: Do not forget to change the training and validation dataset locations in configuration files. <details> <summary> Single node 8-GPU training of ResNet-101 with simple training recipe </summary> ``` export CFG_FILE="config/classification/imagenet/resnet.yaml" cvnets-train --common.config-file $CFG_FILE --common.results-loc classification_results --common.override-kwargs model.classification.resnet.depth=101 ``` </details> <details> <summary> Single node 8-GPU training of ResNet-34 with simple training recipe </summary> ``` export CFG_FILE="config/classification/imagenet/resnet.yaml" cvnets-train --common.config-file $CFG_FILE --common.results-loc classification_results --common.override-kwargs model.classification.resnet.depth=34 ``` </details> ## Citation ``` @inproceedings{he2016deep, title={Deep residual learning for image recognition}, author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={770--778}, year={2016} } ```