cvnets.models.classification.config package
Submodules
cvnets.models.classification.config.byteformer module
- cvnets.models.classification.config.byteformer.get_configuration(opts: Namespace) Dict [source]
Get configuration parameters associated with ByteFormer.
These parameters are similar to those of DeIT (https://arxiv.org/pdf/2012.12877.pdf).
- Parameters:
opts – The options configuration.
- Returns:
A dict with keys specifying the parameters needed for ByteFormer.
cvnets.models.classification.config.efficientnet module
- class cvnets.models.classification.config.efficientnet.CompoundScalingConfig(width_mult: float, depth_mult: float, train_resolution: int)[source]
Bases:
object
This class stores the compound scaling configuration
- width_mult: float
- depth_mult: float
- train_resolution: int
- __init__(width_mult: float, depth_mult: float, train_resolution: int) None
- class cvnets.models.classification.config.efficientnet.EfficientNetBlockConfig(expand_ratio: float, kernel: int, stride: int, in_channels: int, out_channels: int, num_layers: int, width_mult: float, depth_mult: float)[source]
Bases:
object
This class stores the config for each block in EfficientNet i.e. MBConv layers in Table 1 of EfficientNet paper Notably, this class takes width_mult and depth_mult as input too and adjusts layers’ depth and width, as is required in different modes of EfficientNet.
cvnets.models.classification.config.fastvit module
cvnets.models.classification.config.mobilenetv1 module
cvnets.models.classification.config.mobilenetv2 module
cvnets.models.classification.config.mobilenetv3 module
cvnets.models.classification.config.mobileone module
cvnets.models.classification.config.mobilevit module
cvnets.models.classification.config.mobilevit_v2 module
cvnets.models.classification.config.regnet module
- class cvnets.models.classification.config.regnet.BlockParamsConfig(depth: int, w_0: int, w_a: float, w_m: float, groups: int, se_ratio: float = 0.0, bottleneck_multiplier: float = 1.0, quant: int = 8, stride: int = 2)[source]
Bases:
object
- This class stores the quantized linear block params. It is adapted from torchvision.models.regnet:
- Parameters:
depth – The total number of XBlocks in the network
w_0 – Initial width
w_a – Width slope
w_m – Width slope in the log space
groups – The number of groups to use in the XBlock. Referred to
se_ratio – The squeeze-excitation ratio. The number of channels in the SE module will be the input channels scaled by this ratio.
bottleneck_multiplier – The number of output channels in the intermediate conv layers in bottleneck/Xblock block will be scaled by this value.
quant – Block widths will be divisible by this value
stride – The stride of the 3x3 conv of the XBlocks
- cvnets.models.classification.config.regnet.get_configuration(opts: Namespace) Dict[str, Dict[str, int | float]] [source]
Gets the RegNet model configuration for the specified RegNet mode.
- Parameters:
opts – command-line arguments
- Returns:
- A dictionary containing the configuration for each layer. Each key is of the form
- layer<i> and the corresponding value is another dictionary with the following keys:
depth: The depth of the stage at layer<i> width: The width of the blocks at this stage groups: The convolution groups of each block at this stage stride: The stride of the convolutions in each block at this stage bottleneck_multiplier: The multiplier for the bottleneck conv in each of this stage’s blocks se_ratio: The squeeze-excitation ratio for each block in this stage
cvnets.models.classification.config.resnet module
- cvnets.models.classification.config.resnet.add_squeeze_channels(config_dict: Dict, per_layer_squeeze_channels: List[int]) None [source]
Given the config_dict for the specified ResNet model, for each layer, adds a new key (‘squeeze_channels’) with the corresponding channels for the squeeze-excitation module.
- Parameters:
config_dict – The dict constructed by the get_configuration function.
per_layer_squeeze_channels – A list of length 4 where the ith element specifies the number of channels for squeeze-excitation module of layer i.
cvnets.models.classification.config.swin_transformer module
cvnets.models.classification.config.vit module
- cvnets.models.classification.config.vit.get_configuration(opts: Namespace) Dict [source]
Gets the ViT model configuration.
The ‘tiny’ and ‘small’ model configurations were used in the “Training data-efficient image transformers & distillation through attention” paper.
The ‘base’, ‘large’, and ‘huge’ variants were used in the “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale” paper.
- Parameters:
opts – Command line options.
- Returns:
The ViT model configuration dict.
- Return type:
vit_config