cvnets.models.detection.utils package
Submodules
cvnets.models.detection.utils.rcnn_utils module
- class cvnets.models.detection.utils.rcnn_utils.FastRCNNConvFCHead(opts, input_size: Tuple[int, int, int], conv_layers: List[int], fc_layers: List[int], *args, **kwargs)[source]
Bases:
Sequential
- __init__(opts, input_size: Tuple[int, int, int], conv_layers: List[int], fc_layers: List[int], *args, **kwargs)[source]
- Parameters:
input_size (Tuple[int, int, int]) – the input size in CHW format.
conv_layers (list) – feature dimensions of each Convolution layer
fc_layers (list) – feature dimensions of each FCN layer
- class cvnets.models.detection.utils.rcnn_utils.RPNHead(opts, in_channels: int, num_anchors: int, conv_depth=1)[source]
Bases:
Module
Adds a simple RPN Head with classification and regression heads
- Parameters:
in_channels (int) – number of channels of the input feature
num_anchors (int) – number of anchors to be predicted
conv_depth (int, optional) – number of convolutions
- __init__(opts, in_channels: int, num_anchors: int, conv_depth=1) None [source]
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- forward(x: List[Tensor]) Tuple[List[Tensor], List[Tensor]] [source]
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class cvnets.models.detection.utils.rcnn_utils.MaskRCNNHeads(opts, in_channels: int, layers: List, dilation: int)[source]
Bases:
Sequential
- __init__(opts, in_channels: int, layers: List, dilation: int)[source]
- Parameters:
in_channels (int) – number of input channels
layers (list) – feature dimensions of each FCN layer
dilation (int) – dilation rate of kernel
norm_layer (callable, optional) – Module specifying the normalization layer to use. Default: None
- class cvnets.models.detection.utils.rcnn_utils.MaskRCNNPredictor(opts, in_channels: int, dim_reduced: int, num_classes: int)[source]
Bases:
Sequential
- class cvnets.models.detection.utils.rcnn_utils.FastRCNNPredictor(in_channels: int, num_classes: int)[source]
Bases:
Module
Standard classification + bounding box regression layers for Fast R-CNN.
- Parameters:
in_channels (int) – number of input channels
num_classes (int) – number of output classes (including background)
- __init__(in_channels: int, num_classes: int) None [source]
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- forward(x: Tensor) Tuple[Tensor, Tensor] [source]
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.