cvnets.models.segmentation.heads package
Submodules
cvnets.models.segmentation.heads.base_seg_head module
- class cvnets.models.segmentation.heads.base_seg_head.BaseSegHead(opts, enc_conf: dict, use_l5_exp: bool | None = False, *args, **kwargs)[source]
Bases:
BaseAnyNNModel
Base class for segmentation heads
- __init__(opts, enc_conf: dict, use_l5_exp: bool | None = False, *args, **kwargs)[source]
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- forward(enc_out: Dict, *args, **kwargs) Tensor [source]
Implement the model-specific forward function in sub-classes.
- classmethod add_arguments(parser: ArgumentParser) ArgumentParser [source]
Add segmentation head specific arguments
- get_trainable_parameters(weight_decay: float = 0.0, no_decay_bn_filter_bias: bool = False, *args, **kwargs)[source]
Get parameters for training along with the learning rate.
- Parameters:
weight_decay – weight decay
no_decay_bn_filter_bias – Do not decay BN and biases. Defaults to False.
- Returns:
Returns a tuple of length 2. The first entry is a list of dictionary with three keys (params, weight_decay, param_names). The second entry is a list of floats containing learning rate for each parameter.
Note
Kwargs may contain module_name. To avoid multiple arguments with the same name, we pop it and concatenate with encoder or head name
- update_classifier(opts, n_classes: int) None [source]
This function updates the classification layer in a model. Useful for finetuning purposes.
- classmethod build_model(opts: Namespace, *args, **kwargs) BaseAnyNNModel [source]
Build a model from command-line arguments. Sub-classes must implement this method
- Parameters:
opts – Command-line arguments
- …note::
This function is typically implemented in the base class for each task and implementation is reused by all models in that task.
cvnets.models.segmentation.heads.deeplabv3 module
- class cvnets.models.segmentation.heads.deeplabv3.DeeplabV3(opts, enc_conf: Dict, use_l5_exp: bool | None = False, *args, **kwargs)[source]
Bases:
BaseSegHead
This class defines the segmentation head in DeepLabv3 architecture :param opts: command-line arguments :param enc_conf: Encoder input-output configuration at each spatial level :type enc_conf: Dict :param use_l5_exp: Use features from expansion layer in Level5 in the encoder :type use_l5_exp: Optional[bool]
- __init__(opts, enc_conf: Dict, use_l5_exp: bool | None = False, *args, **kwargs) None [source]
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- update_classifier(opts, n_classes: int) None [source]
This function updates the classification layer in a model. Useful for finetuning purposes.
cvnets.models.segmentation.heads.pspnet module
- class cvnets.models.segmentation.heads.pspnet.PSPNet(opts, enc_conf: dict, use_l5_exp: bool | None = False, *args, **kwargs)[source]
Bases:
BaseSegHead
This class defines the segmentation head in PSPNet architecture :param opts: command-line arguments :param enc_conf: Encoder input-output configuration at each spatial level :type enc_conf: Dict :param use_l5_exp: Use features from expansion layer in Level5 in the encoder :type use_l5_exp: Optional[bool]
- __init__(opts, enc_conf: dict, use_l5_exp: bool | None = False, *args, **kwargs) None [source]
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- update_classifier(opts, n_classes: int) None [source]
This function updates the classification layer in a model. Useful for finetuning purposes.
cvnets.models.segmentation.heads.simple_seg_head module
- class cvnets.models.segmentation.heads.simple_seg_head.SimpleSegHead(opts, enc_conf: Dict, use_l5_exp: bool | None = False, *args, **kwargs)[source]
Bases:
BaseSegHead
This class defines the simple segmentation head with merely a classification layer. This is useful for performing linear probling on segmentation task. :param opts: command-line arguments :param enc_conf: Encoder input-output configuration at each spatial level :type enc_conf: Dict :param use_l5_exp: Use features from expansion layer in Level5 in the encoder :type use_l5_exp: Optional[bool]
- __init__(opts, enc_conf: Dict, use_l5_exp: bool | None = False, *args, **kwargs) None [source]
Initializes internal Module state, shared by both nn.Module and ScriptModule.