cvnets.neural_augmentor.utils package

Submodules

cvnets.neural_augmentor.utils.neural_aug_utils module

class cvnets.neural_augmentor.utils.neural_aug_utils.Clip(min_val: float, max_val: float, hard_clip: bool | None = False, *args, **kwargs)[source]

Bases: Module

__init__(min_val: float, max_val: float, hard_clip: bool | None = False, *args, **kwargs) None[source]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(x: Any) Any[source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class cvnets.neural_augmentor.utils.neural_aug_utils.Identity(*args, **kwargs)[source]

Bases: Module

__init__(*args, **kwargs)[source]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(x: Any) Any[source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class cvnets.neural_augmentor.utils.neural_aug_utils.FixedSampler(value: float, clip_fn: Module | None = Identity(), *args, **kwargs)[source]

Bases: Module

__init__(value: float, clip_fn: Module | None = Identity(), *args, **kwargs)[source]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(sample_shape=(), data_type=torch.float32, device=device(type='cpu')) Tensor[source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class cvnets.neural_augmentor.utils.neural_aug_utils.UniformSampler(low: float, high: float, min_fn: Module | None = Identity(), max_fn: Module | None = Identity(), *args, **kwargs)[source]

Bases: Module

__init__(low: float, high: float, min_fn: Module | None = Identity(), max_fn: Module | None = Identity(), *args, **kwargs)[source]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(sample_shape=(), data_type=torch.float32, device=device(type='cpu')) Tensor[source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

property high
property low
cvnets.neural_augmentor.utils.neural_aug_utils.random_noise(x: Tensor, variance: Tensor, *args, **kwargs) Tensor[source]

Apply random noise sampled.

cvnets.neural_augmentor.utils.neural_aug_utils.random_contrast(x: Tensor, magnitude: Tensor, *args, **kwargs) Tensor[source]
cvnets.neural_augmentor.utils.neural_aug_utils.random_brightness(x: Tensor, magnitude: Tensor, *args, **kwargs) Tensor[source]

Brightness function.

cvnets.neural_augmentor.utils.neural_aug_utils.identity(x: Tensor, *args, **kwargs) Tensor[source]

Identity function

Module contents