cvnets.text_encoders package
Submodules
cvnets.text_encoders.base_text_encoder module
- class cvnets.text_encoders.base_text_encoder.BaseTextEncoder(opts, projection_dim: int, *args, **kwargs)[source]
Bases:
Module
Base class for text encoder
- __init__(opts, projection_dim: int, *args, **kwargs) None [source]
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- classmethod add_arguments(parser: ArgumentParser) ArgumentParser [source]
Add model specific arguments
- get_trainable_parameters(weight_decay: float | None = 0.0, no_decay_bn_filter_bias: bool | None = False, *args, **kwargs)[source]
- forward(text_tokens: Tensor, key_padding_mask: Tensor | None = None, attn_mask: Tensor | None = None, *args, **kwargs) Any [source]
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
cvnets.text_encoders.transformer module
- class cvnets.text_encoders.transformer.TextTransformer(opts, projection_dim: int, *args, **kwargs)[source]
Bases:
BaseTextEncoder
- __init__(opts, projection_dim: int, *args, **kwargs) None [source]
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- reset_parameters_clip_style()[source]
This function resets the weights of Transformer model as done in the CLIP paper
- classmethod add_arguments(parser: ArgumentParser) ArgumentParser [source]
Add model specific arguments
- encode_text(text_tokens: Tensor, key_padding_mask: Tensor | None = None, return_all_tokens: bool = False, *args, **kwargs) Tensor [source]
Returns token embeddings.
- Parameters:
text_tokens – a tensor of token indices. ([Batch, Seq_len])
key_padding_mask – a tensor of boolean values as the padding mask.
return_all_tokens – a boolean flag to return all tokens, defaults to False to return only EOT token embedding.
- Returns:
a tensor of [Batch, Seq_len, hidden_dim] if return_all_tokens is True, otherwise a tensor of [Batch, hidden_dim].
- forward_zero_shot(text_tokens: Tensor, key_padding_mask: Tensor | None = None, *args, **kwargs) Tensor [source]
- forward(text_tokens: Tensor, key_padding_mask: Tensor | None = None, *args, **kwargs) Tensor [source]
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
Module contents
- cvnets.text_encoders.arguments_text_encoder(parser: ArgumentParser) ArgumentParser [source]
Register arguments of all text encoders.
- cvnets.text_encoders.build_text_encoder(opts, projection_dim: int, *args, **kwargs) BaseTextEncoder [source]
Helper function to build the text encoder from command-line arguments.
- Parameters:
opts – Command-line arguments
projection_dim – The dimensionality of the projection head after text encoder.
- Returns:
Text encoder module.