loss_fn.segmentation package
Submodules
loss_fn.segmentation.base_segmentation_criteria module
- class loss_fn.segmentation.base_segmentation_criteria.BaseSegmentationCriteria(opts: Namespace, *args, **kwargs)[source]
Bases:
BaseCriteria
Base class for defining segmentation loss functions. Sub-classes must implement forward function.
- Parameters:
opts – command line arguments
loss_fn.segmentation.cross_entropy module
- class loss_fn.segmentation.cross_entropy.SegCrossEntropy(opts: Namespace, *args, **kwargs)[source]
Bases:
BaseSegmentationCriteria
Cross entropy loss for the task of semantic segmentation.
- Parameters:
opts – command-line arguments
- __init__(opts: Namespace, *args, **kwargs) None [source]
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- classmethod add_arguments(parser: ArgumentParser) ArgumentParser [source]
Add criterion-specific arguments to the parser.
- forward(input_sample: Any, prediction: Mapping[str, Tensor | Tuple[Tensor, Tensor]] | Tensor | Tuple[Tensor, Tensor], target: Tensor, *args, **kwargs) Mapping[str, Tensor] [source]
Compute CE segmentation loss
- Parameters:
input_sample – Input image tensor to model.
prediction – Output of model. It can be a * Tensor * Tuple[Tensor, Tensor] * Mapping[segmentation_output, Tensor] * Mapping[segmentation_output, Tuple[Tensor, Tensor]], where segmentation_output is a required key.
target – Target label tensor containing values in the range [0, C), where \(C\) is the number of classes
- Shapes:
input_sample: This loss function does not care about this argument. prediction:
When prediction is a Tensor, then shape is [Batch size, C, Height, Width]
- When prediction is a Tuple[Tensor, Tensor], then shape of one tensor is [Batch size, C, Height, Width]
while the other is [Batch size, C, Height / O, Width/ O] where O is the output stride of feature map (typically 4).
- When prediction is a dictionary, then the shape of prediction[“segmentation_output”] should
be the same as described in above steps (depending on type).
target: The shape of target tensor is [Batch size, Height, Width]
- Returns:
scalar value) is returned with total_loss as mandatory and (seg_loss, aux_loss) as optional keys. total_loss is weighted sum of seg_loss and aux_loss (when applicable).
- Return type:
Mapping of the form (string