#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2020 Apple Inc. All Rights Reserved.
#
import json
import logging
import os
from sad.generator import ImplicitFeedbackGenerator
from sad.model import CornacModel
from .base import TrainerBase, TrainerFactory
[docs]@TrainerFactory.register
class CornacTrainer(TrainerBase):
def __init__(
self,
config: dict,
model: CornacModel,
generator: ImplicitFeedbackGenerator,
task: "TrainingTask",
):
super().__init__(config, model, generator, task)
self.logger = logging.getLogger(f"trainer.{self.__class__.__name__}")
@property
def lambda_reg(self):
""":obj:`float`: Read directly from ``self.spec``. The ``lambda`` regularization
parameter that will be used during training. Specific to
``sad.model.CoracModel``."""
lambda_reg = self.spec.get("lambda", 0)
return lambda_reg
[docs] def save(self, working_dir: str = None):
"""Save trainer configuration."""
if not working_dir:
working_dir = self.working_dir
model_s3_key_path = self.model.s3_key_path
os.makedirs(os.path.join(working_dir, model_s3_key_path), exist_ok=True)
json.dump(
self.config,
open(
os.path.join(working_dir, model_s3_key_path, "trainer_config.json"), "w"
),
)
[docs] def train(self):
generator = self.generator
self.logger.info("Generator begins to prepare data ...")
generator.prepare()
self.logger.info("Data preparation done ...")
model = self.model
model.initialize_cornac_model(self)
dataset = generator.cornac_dataset
self.on_loop_begin()
model.cornac_model.fit(dataset)
self.on_loop_end()
[docs] def load(self, folder: str):
pass