Source code for sad.trainer.cornac

#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2020 Apple Inc. All Rights Reserved.
#

import json
import logging
import os

from sad.generator import ImplicitFeedbackGenerator
from sad.model import CornacModel

from .base import TrainerBase, TrainerFactory


[docs]@TrainerFactory.register class CornacTrainer(TrainerBase): def __init__( self, config: dict, model: CornacModel, generator: ImplicitFeedbackGenerator, task: "TrainingTask", ): super().__init__(config, model, generator, task) self.logger = logging.getLogger(f"trainer.{self.__class__.__name__}") @property def lambda_reg(self): """:obj:`float`: Read directly from ``self.spec``. The ``lambda`` regularization parameter that will be used during training. Specific to ``sad.model.CoracModel``.""" lambda_reg = self.spec.get("lambda", 0) return lambda_reg
[docs] def save(self, working_dir: str = None): """Save trainer configuration.""" if not working_dir: working_dir = self.working_dir model_s3_key_path = self.model.s3_key_path os.makedirs(os.path.join(working_dir, model_s3_key_path), exist_ok=True) json.dump( self.config, open( os.path.join(working_dir, model_s3_key_path, "trainer_config.json"), "w" ), )
[docs] def train(self): generator = self.generator self.logger.info("Generator begins to prepare data ...") generator.prepare() self.logger.info("Data preparation done ...") model = self.model model.initialize_cornac_model(self) dataset = generator.cornac_dataset self.on_loop_begin() model.cornac_model.fit(dataset) self.on_loop_end()
[docs] def load(self, folder: str): pass