#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2020 Apple Inc. All Rights Reserved.
#
import json
import logging
import os
from sad.generator import ImplicitFeedbackGenerator
from sad.model import SVDModel
from .base import TrainerBase, TrainerFactory
[docs]@TrainerFactory.register
class SVDTrainer(TrainerBase):
def __init__(
self,
config: dict,
model: SVDModel,
generator: ImplicitFeedbackGenerator,
task: "TrainingTask",
):
super().__init__(config, model, generator, task)
self.logger = logging.getLogger(f"trainer.{self.__class__.__name__}")
@property
def reg(self) -> float:
"""Regularization parameter. Read directly from ``"reg"`` field
in ``self.spec``."""
return self.spec.get("reg", 0.01)
[docs] def save(self, working_dir: str = None):
"""Save trainer configuration."""
if not working_dir:
working_dir = self.working_dir
model_s3_key_path = self.model.s3_key_path
os.makedirs(os.path.join(working_dir, model_s3_key_path), exist_ok=True)
json.dump(
self.config,
open(
os.path.join(working_dir, model_s3_key_path, "trainer_config.json"), "w"
),
)
[docs] def train(self):
generator = self.generator
self.logger.info("Generator begins to prepare data ...")
generator.prepare()
self.logger.info("Data preparation done ...")
model = self.model
model.initialize_svd_model(self)
dataset = generator.surprise_dataset
self.on_loop_begin()
model.svd_model.fit(dataset)
self.on_loop_end()
[docs] def load(self, folder: str):
pass