coremltools.converters.libsvm.convert¶
-
coremltools.converters.libsvm.
convert
(model, input_names='input', target_name='target', probability='classProbability', input_length='auto')¶ Convert a LIBSVM model to Core ML format.
Parameters: - model: a libsvm model (C-SVC, nu-SVC, epsilon-SVR, or nu-SVR)
or string path to a saved model.
- input_names: str | [str]
Name of the input column(s). If a single string is used (the default) the input will be an array. The length of the array will be inferred from the model, this can be overridden using the ‘input_length’ parameter.
- target: str
Name of the output column.
- probability: str
Name of the output class probability column. Only used for C-SVC and nu-SVC that have been trained with probability estimates enabled.
- input_length: int
Set the length of the input array. This parameter should only be used when the input is an array (i.e. when ‘input_name’ is a string).
Returns: - model: MLModel
Model in Core ML format.
Examples
# Make a LIBSVM model >>> import svmutil >>> problem = svmutil.svm_problem([0,0,1,1], [[0,1], [1,1], [8,9], [7,7]]) >>> libsvm_model = svmutil.svm_train(problem, svmutil.svm_parameter()) # Convert using default input and output names >>> import coremltools >>> coreml_model = coremltools.converters.libsvm.convert(libsvm_model) # Save the CoreML model to a file. >>> coreml_model.save('./my_model.mlmodel') # Convert using user specified input names >>> coreml_model = coremltools.converters.libsvm.convert(libsvm_model, input_names=['x', 'y'])