coremltools.models.nearest_neighbors.builder¶
Classes
KNearestNeighborsClassifierBuilder (…) |
KNearestNeighborsClassifierBuilder class to construct a CoreML KNearestNeighborsClassifier specification. |
-
class
coremltools.models.nearest_neighbors.builder.
KNearestNeighborsClassifierBuilder
(input_name, output_name, number_of_dimensions, default_class_label, **kwargs)¶ KNearestNeighborsClassifierBuilder class to construct a CoreML KNearestNeighborsClassifier specification.
Please see the Core ML Nearest Neighbors protobuf message for more information on KNearestNeighborsClassifier parameters.
See also
MLModel
,save_spec
Examples
from coremltools.models.nearest_neighbors import KNearestNeighborsClassifierBuilder from coremltools.models.utils import save_spec # Create a KNearestNeighborsClassifier model that takes 4-dimensional input data and outputs a string label. >>> builder = KNearestNeighborsClassifierBuilder(input_name='input', ... output_name='output', ... number_of_dimensions=4, ... default_class_label='default_label') # save the spec by the builder >>> save_spec(builder.spec, 'knnclassifier.mlmodel')
-
__init__
(self, input_name, output_name, number_of_dimensions, default_class_label, **kwargs)¶ Create a KNearestNeighborsClassifierBuilder object. :param input_name: Name of the model input :param output_name: Name of the output :param number_of_dimensions: Number of dimensions of the input data :param default_class_label: The default class label to use for predictions. Must be either an int64 or a string. :param number_of_neighbors: Number of neighbors to use for predictions. Default = 5 with allowed values between 1-1000. :param weighting_scheme: Weight function used in prediction. One of ‘uniform’ (default) or ‘inverse_distance’ :param index_type: Algorithm to compute nearest neighbors. One of ‘linear’ (default), or ‘kd_tree’. :param leaf_size: Leaf size for the kd-tree. Ignored if index type is ‘linear’. Default = 30.
-
add_samples
(self, data_points, labels)¶ Add some samples to the KNearestNeighborsClassifier model :param data_points: List of input data points :param labels: List of corresponding labels :return: None
Get the author for the KNearestNeighborsClassifier model :return: the author
-
description
¶ Get the description for the KNearestNeighborsClassifier model :return: the description
-
index_type
¶ Get the index type for the KNearestNeighborsClassifier model :return: the index type
-
is_updatable
¶ Check if the KNearestNeighborsClassifier is updatable :return: is updatable
-
leaf_size
¶ Get the leaf size for the KNearestNeighborsClassifier :return: the leaf size
-
license
¶ Get the author for the KNearestNeighborsClassifier model :return: the author
-
number_of_dimensions
¶ Get the number of dimensions of the input data for the KNearestNeighborsClassifier model :return: number of dimensions
-
number_of_neighbors
¶ Get the number of neighbors value for the KNearestNeighborsClassifier model :return: the number of neighbors default value
-
number_of_neighbors_allowed_range
(self)¶ Get the range of allowed values for the numberOfNeighbors parameter. :return: tuple of (min_value, max_value) or None if the range hasn’t been set
-
number_of_neighbors_allowed_set
(self)¶ Get the set of allowed values for the numberOfNeighbors parameter. :return: set of allowed values or None if the set of allowed values hasn’t been populated
-
set_index_type
(self, index_type, leaf_size=30)¶ Set the index type for the KNearestNeighborsClassifier model :param index_type: One of [ ‘linear’, ‘kd_tree’ ] :param leaf_size: For kd_tree indexes, the leaf size to use (default = 30) :return: None
-
set_number_of_neighbors_with_bounds
(self, number_of_neighbors, allowed_range=None, allowed_set=None)¶ Set the numberOfNeighbors parameter for the KNearestNeighborsClassifier model. :param allowed_range: tuple of (min_value, max_value) defining the range of allowed values :param allowed_values: set of allowed values for the number of neighbors :return: None
-
weighting_scheme
¶ Get the weighting scheme for the KNearestNeighborsClassifier model :return: the weighting scheme