Source code for cvnets.models.base_model

#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2023 Apple Inc. All Rights Reserved.
#

from __future__ import annotations

import argparse
import traceback
from typing import Any, Dict, List, Mapping, Optional, Tuple

import torch
from torch import nn

from cvnets.layers import norm_layers_tuple
from cvnets.misc.common import get_tensor_sizes, parameter_list
from cvnets.misc.init_utils import initialize_weights
from options.parse_args import JsonValidator
from utils import logger
from utils.common_utils import check_frozen_norm_layer
from utils.ddp_utils import is_master


[docs]class BaseAnyNNModel(nn.Module): """Base class for any neural network"""
[docs] def __init__(self, opts, *args, **kwargs) -> None: super().__init__() self.opts = opts
[docs] @classmethod def add_arguments(cls, parser: argparse.ArgumentParser): """Add model-specific arguments""" if cls != BaseAnyNNModel: return parser group = parser.add_argument_group(title=cls.__name__) group.add_argument( "--model.resume-exclude-scopes", type=str, default="", help="Comma-separated list of parameter scopes (regex strings) to exclude when " "loading a pre-trained model", ) group.add_argument( "--model.ignore-missing-scopes", type=str, default="", help="Comma-separated list of parameter scopes (regex strings) to ignore " "if they are missing from the pre-training model", ) group.add_argument( "--model.rename-scopes-map", type=JsonValidator(List[List[str]]), default=None, help="A mapping from checkpoint variable names to match the existing model names." " The mapping is represented as a List[List[str]], e.g. [['before', 'after'], ['this', 'that']]." " Note: only loading from Yaml file is supported for this argument.", ) group.add_argument( "--model.freeze-modules", type=str, default="", help="Comma-separated list of parameter scopes (regex strings) to freeze.", ) return parser
[docs] def reset_parameters(self, opts: argparse.Namespace) -> None: """Initialize model weights""" initialize_weights(opts=opts, modules=self.modules())
[docs] def forward(self, x: Any, *args, **kwargs) -> Any: """Implement the model-specific forward function in sub-classes.""" raise NotImplementedError
def _apply_layer_wise_lr( self, weight_decay: Optional[float] = 0.0, no_decay_bn_filter_bias: Optional[bool] = False, *args, **kwargs, ): """This function can be used to adjust the learning rate of each layer in a model. The functionality of this function may vary from model to model, so we do not implement it in the base class and expects child model classes will implement this function, if desired. """ raise NotImplementedError( f"Please implement _apply_layer_wise_lr function for {self.__name__}" )
[docs] def get_trainable_parameters( self, weight_decay: float = 0.0, no_decay_bn_filter_bias: bool = False, module_name: str = "", *args, **kwargs, ) -> Tuple[List[Mapping], List[float]]: """Get parameters for training along with the learning rate. Args: weight_decay: weight decay no_decay_bn_filter_bias: Do not decay BN and biases. Defaults to False. Returns: Returns a tuple of length 2. The first entry is a list of dictionary with three keys (params, weight_decay, param_names). The second entry is a list of floats containing learning rate for each parameter. Note: Kwargs may contain module_name. To avoid multiple arguments with the same name, we pop it and concatenate with encoder or head name """ param_list = parameter_list( named_parameters=self.named_parameters, weight_decay=weight_decay, no_decay_bn_filter_bias=no_decay_bn_filter_bias, module_name=module_name, *args, **kwargs, ) return param_list, [1.0] * len(param_list)
[docs] def dummy_input_and_label(self, batch_size: int) -> Dict: """Create dummy input and labels for CI/CD purposes. Child classes should implement it.""" raise NotImplementedError( f"Please implement dummy_input_and_label function for {self.__name__}" )
[docs] def get_exportable_model(self) -> nn.Module: """This function can be used to prepare the architecture for inference. For example, re-parameterizing branches when possible. The functionality of this method may vary from model to model, so child model classes have to implement this method, if such a transformation exists. """ return self
[docs] @classmethod def freeze_norm_layers( cls, opts: argparse.Namespace, model: BaseAnyNNModel ) -> None: """Freeze normalization layers in the model Args: opts: Command-line arguments model: An instance of `BaseAnyNNModel` """ is_maseter_node = is_master(opts) for m in model.modules(): if isinstance(m, norm_layers_tuple): m.eval() m.weight.requires_grad = False m.bias.requires_grad = False m.training = False # check if layers are frozen or not frozen_state, count_norm = check_frozen_norm_layer(model) if count_norm > 0 and frozen_state and is_maseter_node: logger.error( "Something is wrong while freezing normalization layers. Please check" ) if is_maseter_node: logger.log("Normalization layers are frozen")
[docs] @classmethod def build_model(cls, opts: argparse.Namespace, *args, **kwargs) -> BaseAnyNNModel: """Build a model from command-line arguments. Sub-classes must implement this method Args: opts: Command-line arguments ...note:: This function is typically implemented in the base class for each task and implementation is reused by all models in that task. """ raise NotImplementedError( f"Please implement build_model function for {cls.__name__}" )
[docs] @torch.no_grad() def info(self) -> None: """Prints model, parameters, and FLOPs on start rank.""" train_mode = False if self.training: # do profiling in eval mode train_mode = True self.eval() logger.log(logger.color_text("Model")) # print the model skeleton print(self) logger.double_dash_line(dashes=65) print("{:>35} Summary".format(self.__class__.__name__)) logger.double_dash_line(dashes=65) # compute the network parameters overall_params = sum([p.numel() for p in self.parameters()]) print("{:<20} = {:>8.3f} M".format("Overall parameters", overall_params / 1e6)) try: # Compute FLOPs using FVCore try: input_fvcore = self.dummy_input_and_label(batch_size=1)["samples"] except NotImplementedError: logger.warning( "Profiling not available, dummy_input_and_label not implemented for this model." ) return # compute flops using FVCore from fvcore.nn import FlopCountAnalysis, flop_count_table flop_analyzer = FlopCountAnalysis(self, input_fvcore) logger.log(f"FVCore Analysis:") # print input sizes input_sizes = get_tensor_sizes(input_fvcore) logger.log("Input sizes: {}".format(input_sizes)) print(flop_count_table(flop_analyzer)) logger.warning( "\n** Please be cautious when using the results in papers. " "Certain operations may or may not be accounted in FLOP computation in FVCore. " "Therefore, you want to manually ensure that FLOP computation is correct." ) uncalled_modules = flop_analyzer.uncalled_modules() if len(uncalled_modules) > 0: logger.warning(f"Uncalled Modules:\n{uncalled_modules}") else: logger.log(f"No uncalled modules detected by fvcore.") unsupported_ops = flop_analyzer.unsupported_ops() if len(unsupported_ops) > 0: logger.warning(f"Unsupported Ops:\n{unsupported_ops}") else: logger.log(f"No unsupported ops detected by fvcore.") except: logger.ignore_exception_with_warning( "Unable to compute FLOPs using FVCore. Please check" ) logger.double_dash_line(dashes=65) if train_mode: # switching back to train mode. self.train()