cvnets.neural_augmentor package
Subpackages
Submodules
cvnets.neural_augmentor.neural_aug module
- class cvnets.neural_augmentor.neural_aug.BaseNeuralAugmentor(opts, *args, **kwargs)[source]
Bases:
Module
Base class for neural (or range) augmentation
- __init__(opts, *args, **kwargs)[source]
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- get_trainable_parameters(weight_decay: float | None = 0.0, no_decay_bn_filter_bias: bool | None = False, *args, **kwargs)[source]
Get trainable parameters
- forward(x: Tensor, *args, **kwargs) Tensor [source]
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class cvnets.neural_augmentor.neural_aug.BasicNeuralAugmentor(opts, *args, **kwargs)[source]
Bases:
BaseNeuralAugmentor
Basic neural augmentation. This class learns per-channel augmentation parameters and apply the same parameter to all images in a batch.
See neural (or range) augmentation paper for details.
- class cvnets.neural_augmentor.neural_aug.DistributionNeuralAugmentor(opts, *args, **kwargs)[source]
Bases:
BaseNeuralAugmentor
Distribution-based neural (or range) augmentation. This class samples the augmentation parameters from a specified distribution with learnable range.
See neural (or range) augmentation paper for details.