turicreate.activity_classifier.ActivityClassifier.predict_topk¶
-
ActivityClassifier.
predict_topk
(dataset, output_type='probability', k=3, output_frequency='per_row')¶ Return top-k predictions for the
dataset
, using the trained model. Predictions are returned as an SFrame with three columns: prediction_id, class, and probability, or rank, depending on theoutput_type
parameter.Parameters: - dataset : SFrame
Dataset of new observations. Must include columns with the same names as the features and session id used for model training, but does not require a target column. Additional columns are ignored.
- output_type : {‘probability’, ‘rank’}, optional
Choose the return type of the prediction:
- probability: Probability associated with each label in the prediction.
- rank : Rank associated with each label in the prediction.
- k : int, optional
Number of classes to return for each input example.
- output_frequency : {‘per_row’, ‘per_window’}, optional
The frequency of the predictions which is one of:
- ‘per_row’: Each prediction is returned
prediction_window
times. - ‘per_window’: Return a single prediction for each
prediction_window
rows indataset
persession_id
.
- ‘per_row’: Each prediction is returned
Returns: - out : SFrame
An SFrame with model predictions.
Examples
>>> pred = m.predict_topk(validation_data, k=3) >>> pred +---------------+-------+-------------------+ | row_id | class | probability | +---------------+-------+-------------------+ | 0 | 4 | 0.995623886585 | | 0 | 9 | 0.0038311756216 | | 0 | 7 | 0.000301006948575 | | 1 | 1 | 0.928708016872 | | 1 | 3 | 0.0440889261663 | | 1 | 2 | 0.0176190119237 | | 2 | 3 | 0.996967732906 | | 2 | 2 | 0.00151345680933 | | 2 | 7 | 0.000637513934635 | | 3 | 1 | 0.998070061207 | | ... | ... | ... | +---------------+-------+-------------------+