turicreate.decision_tree_classifier.DecisionTreeClassifier.get_feature_importance¶
-
DecisionTreeClassifier.
get_feature_importance
()¶ Get the importance of features used by the model.
The measure of importance of feature X is determined by the sum of occurrence of X as a branching node in all trees.
When X is a categorical feature, e.g. “Gender”, the index column contains the value of the feature, e.g. “M” or “F”. When X is a numerical feature, index of X is None.
Returns: - out : SFrame
A table with three columns: name, index, count, ordered by ‘count’ in descending order.
Examples
>>> m.get_feature_importance() Rows: 31 Data: +-----------------------------+-------+-------+ | name | index | count | +-----------------------------+-------+-------+ | DER_mass_transverse_met_lep | None | 66 | | DER_mass_vis | None | 65 | | PRI_tau_pt | None | 61 | | DER_mass_MMC | None | 59 | | DER_deltar_tau_lep | None | 58 | | DER_pt_tot | None | 41 | | PRI_met | None | 38 | | PRI_jet_leading_eta | None | 30 | | DER_deltaeta_jet_jet | None | 27 | | DER_mass_jet_jet | None | 24 | +-----------------------------+-------+-------+ [31 rows x 3 columns]