turicreate.image_analysis.get_deep_features¶
-
turicreate.image_analysis.
get_deep_features
(images, model_name, batch_size=64, verbose=True)¶ Extracts features from images from a specific model.
Parameters: - images : SArray
Input data.
- model_name : string
string optional Uses a pretrained model to bootstrap an image classifier:
- “resnet-50” : Uses a pretrained resnet model.
- Exported Core ML model will be ~90M.
- “squeezenet_v1.1” : Uses a pretrained squeezenet model.
- Exported Core ML model will be ~4.7M.
- “VisionFeaturePrint_Scene”: Uses an OS internal feature extractor.
- Only on available on iOS 12.0+, macOS 10.14+ and tvOS 12.0+. Exported Core ML model will be ~41K.
Models are downloaded from the internet if not available locally. Once downloaded, the models are cached for future use.
Returns: - out : SArray
Returns an SArray with all the extracted features.
Examples
>>> url = 'https://static.turi.com/datasets/images/nested' >>> image_sframe = turicreate.load_images(url) >>> image_sarray = image_sframe["image"] >>> deep_features_sframe = turicreate.image_analysis.get_deep_features(image_sarray, model_name="resnet-50")