turicreate.object_detector.util.stack_annotations¶
-
turicreate.object_detector.util.
stack_annotations
(annotations_sarray)¶ Converts object detection annotations (ground truth or predictions) to stacked format (an SFrame where each row is one object instance).
Parameters: - annotations_sarray: SArray
An SArray with unstacked predictions, exactly formatted as the annotations column when training an object detector or when making predictions.
Returns: - annotations_sframe: An SFrame with stacked annotations.
See also
Examples
Predictions are returned by the object detector in unstacked format:
>>> predictions = detector.predict(images)
By converting it to stacked format, it is easier to get an overview of object instances:
>>> turicreate.object_detector.util.stack_annotations(predictions) Data: +--------+------------+-------+-------+-------+-------+--------+ | row_id | confidence | label | x | y | width | height | +--------+------------+-------+-------+-------+-------+--------+ | 0 | 0.98 | dog | 123.0 | 128.0 | 80.0 | 182.0 | | 0 | 0.67 | cat | 150.0 | 183.0 | 129.0 | 101.0 | | 1 | 0.8 | dog | 50.0 | 432.0 | 65.0 | 98.0 | +--------+------------+-------+-------+-------+-------+--------+ [3 rows x 7 columns]