Source code for coremltools.converters.mil.mil.builder

#  Copyright (c) 2020, Apple Inc. All rights reserved.
#
#  Use of this source code is governed by a BSD-3-clause license that can be
#  found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause

import numbers
from collections import defaultdict
from typing import Any, Callable, List, Optional, Tuple, Type

import numpy as np

from coremltools import _logger as logger
from coremltools.converters.mil import mil
from coremltools.converters.mil._deployment_compatibility import AvailableTarget
from coremltools.converters.mil.mil.types.symbolic import any_symbolic

from .block import Function, curr_block
from .input_type import (
    InternalInputType,
    ListOrTensorOrDictInputType,
    TensorInputType,
    TupleInputType,
)
from .program import Placeholder, StateTensorPlaceholder
from .scope import (
    SCOPE_STACK,
    VALID_OPS_TO_COPY_SCOPE_INFO,
    ScopeContextManger,
    ScopeInfo,
    ScopeSource,
)
from .var import InternalVar, Var


def is_python_value(val):
    return (
        isinstance(val, (np.generic, np.ndarray))
        or isinstance(val, numbers.Number)
        or isinstance(val, str)
        or isinstance(val, bool)
        or (isinstance(val, (tuple, list)) and all(is_python_value(v) for v in val))
    )


[docs] class Builder: """ This class is a singleton builder to construct a MIL program. For more information, see `Create a MIL program <https://coremltools.readme.io/docs/model-intermediate-language#create-a-mil-program>`_. Importing ``.ops`` triggers the installation of all MIL ops into the Builder. For details on each op, see `MIL ops <https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html>`_. Examples -------- >>> from coremltools.converters.mil.mil import Builder as mb >>> from coremltools.converters.mil.mil import Program, Function >>> prog = Program() >>> func_inputs = {"x": mb.placeholder(shape=[2,3]), >>> "y": mb.placeholder(shape=[2,3])} >>> with Function(func_inputs) as ssa_fun: >>> x, y = ssa_fun.inputs['x'], ssa_fun.inputs['y'] >>> res_var = mb.add(x=x, y=y) # created within ssa_fun block >>> ssa_fun.set_outputs([res_var]) >>> prog.add_function("main", ssa_fun) >>> # Importing ops triggers installation of all ops into Builder. >>> from .ops import defs as _ops """ name_count = defaultdict(int) @classmethod def _get_free_name(cls, name): new_name = name + "_" + str(cls.name_count[name]) cls.name_count[name] += 1 return new_name @classmethod def _maybe_set_name(cls, kwargs, op_type): if "name" not in kwargs: kwargs["name"] = cls._get_free_name(op_type) return kwargs @classmethod def _add_const(cls, val, name, before_op): if not is_python_value(val): err_msg = f"Cannot add const {val}" if any_symbolic(val): err_msg += ( "\nPython native vals (list, tuple), np.array that are" + "operation inputs cannot have symbolic values. Consider feeding" + "symbolic shape in through placeholder and use mb.shape() " + f"operator. Input {name}: {val}" ) raise ValueError(err_msg) const_name = cls._get_free_name(name) logger.debug("Adding const op '{}'".format(const_name)) output_var = cls.const(val=val, name=const_name, before_op=before_op) return output_var @classmethod def _create_vars(cls, input_spec, op_name, before_op, candidate_kv): """ For each key K in `candidate_kv`, create a Var if the following are satisfied: - K exists in input_spec and is not an InternalInputType - candidate_kv[K] is not already a Var Inputs ------ - candidate_kv: Dict[str, Any] Key-values may be inputs to an op (whose inputs is defined by input_spec) Returns ------- - var_kv: Dict[str, Var] For the K satisfying the above, var_kv[K] is the newly created Var """ update_dict = {} for k, val in candidate_kv.items(): if isinstance(val, Var): continue # already a Var if k not in input_spec.input_types: continue # k is not an op input in_type = input_spec.input_types[k] if isinstance(in_type, InternalInputType): new_var_name = op_name + "_" + k var = InternalVar(val, name=new_var_name) curr_block().add_internal_var(var) update_dict[k] = var continue # Not a regular Var new_var_name = op_name + "_" + k if isinstance(in_type, TupleInputType): var = [] if not isinstance(val, (list, tuple)): raise ValueError(f"Invalid type {type(val)} for TupleInputType param.") for i, v in enumerate(val): if isinstance(v, Var): var.append(v) continue var.append( cls._add_const(v, new_var_name + str(i), before_op) ) update_dict[k] = var continue if isinstance(in_type, (TensorInputType, ListOrTensorOrDictInputType)): var = cls._add_const(val, new_var_name, before_op) update_dict[k] = var return update_dict @classmethod def _add_op(cls, op_cls, **kwargs): """ Add an op of type `op_cls` (e.g., convolution) to current block. """ kwargs = cls._maybe_set_name(kwargs, op_cls.__name__) logger.debug( "Adding op '{}' of type {}".format(kwargs["name"], op_cls.__name__) ) before_op = kwargs.get("before_op", None) # Shallow copy list inputs to ensure op inputs are immutable kwargs = {k: v if not isinstance(v, (list, tuple)) else v[:] for k, v in kwargs.items() if v is not None} kwargs.update(cls._create_vars( input_spec=op_cls.input_spec, op_name=kwargs["name"], before_op=before_op, candidate_kv=kwargs)) kwargs["enclosing_block"] = curr_block() # Add scope information current_scopes = SCOPE_STACK.get_curr_scopes() kwargs["scopes"] = current_scopes new_op = op_cls(**kwargs) # We record if the op is created under graph pass if len(current_scopes) == 1 and ScopeSource.COREMLTOOLS_GRAPH_PASS in current_scopes: VALID_OPS_TO_COPY_SCOPE_INFO[-1].add(new_op) # Initialize optional input Vars if it wasn't in kwargs default_inputs = new_op.default_inputs() # Shallow copy list inputs to ensure op inputs are immutable missing_optional_vals = {k: v if not isinstance(v, (list, tuple)) else v[:] for k, v in default_inputs.items() if k not in kwargs and v is not None} missing_optional_vars = cls._create_vars( input_spec=op_cls.input_spec, op_name=kwargs["name"], before_op=before_op, candidate_kv=missing_optional_vals) new_op.set_inputs(type_inference=False, **missing_optional_vars) curr_block()._insert_op_before(new_op, before_op=before_op) new_op.build_nested_blocks() new_op.type_value_inference() if len(new_op.outputs) == 1: return new_op.outputs[0] return new_op.outputs @staticmethod def placeholder( shape: Tuple[Any], dtype: Optional[Type] = None, allow_rank0_input: Optional[bool] = False, name: Optional[str] = None, ) -> Placeholder: return Placeholder(shape, dtype, allow_rank0_input=allow_rank0_input, name=name) @staticmethod def TensorSpec(shape, dtype=None): return Placeholder(shape, dtype) @staticmethod def StateTensorSpec(shape, dtype=None): return StateTensorPlaceholder(shape, dtype) @staticmethod def state_tensor_placeholder(shape, dtype=None): return StateTensorPlaceholder(shape, dtype) @staticmethod def _create_function( main_block: Callable, input_specs: Optional[List[Placeholder]] = None, opset_version: Optional[AvailableTarget] = None, ): """ Utility to construct a pymil function. """ if input_specs is None: input_specs = [] # validate number of function inputs num_args = main_block.__code__.co_argcount arg_names = list(main_block.__code__.co_varnames)[:num_args] if len(input_specs) != num_args: raise ValueError( f"{main_block.__name__} expects {num_args} inputs: {arg_names}. Got {len(input_specs)} input_specs." ) # create the function input_spec_dict = {k: v for k, v in zip(arg_names, input_specs)} with Function(input_spec_dict, opset_version) as func: input_vars = [func.inputs[a] for a in arg_names] outputs = main_block(*input_vars) if isinstance(outputs, tuple): outputs = list(outputs) elif not isinstance(outputs, list): outputs = [outputs] func.set_outputs(outputs) # infer the opset version if not provided max_opset_version, _ = func.get_max_opset_version_and_op() if opset_version is None: func.opset_version = max_opset_version return func @staticmethod def function( input_specs: Optional[List[Placeholder]] = None, opset_version: Optional[AvailableTarget] = None, ): """ The ``mb.function`` decorator creates a MIL function. Parameters ---------- input_specs: List[TensorSpec] Describes the function inputs opset_version: AvailableTarget enum Describes the opset version of the function Examples -------- >>> import coremltools as ct >>> @mb.function(input_specs=[mb.TensorSpec(shape=(1,2))], opset_version=ct.target.iOS16) >>> def func(a): >>> return mb.add(x=a, y=2) """ def wrapper(main_block): return Builder._create_function(main_block, input_specs, opset_version) return wrapper
[docs] @staticmethod def program( input_specs: Optional[List[Placeholder]] = None, opset_version: Optional[AvailableTarget] = None, function_name: Optional[str] = "main", ): """ The ``mb.program`` decorator creates a MIL program with a single function with name ``function_name``. Parameters ---------- input_specs: List[TensorSpec] Describes the function inputs opset_version: AvailableTarget enum Describes the opset version of the program function_name: str Name of the function Examples -------- >>> import coremltools as ct >>> from coremltools.converters.mil.mil import Builder as mb >>> >>> @mb.program(input_specs=[mb.TensorSpec(shape=(1,2))], opset_version=ct.target.iOS16) >>> def prog(a): >>> return mb.add(x=a, y=2) """ def wrapper(main_block): function = Builder._create_function(main_block, input_specs, opset_version) program = mil.Program() program.add_function(function_name, function) return program return wrapper
@staticmethod def scope( *scopes: List[ScopeInfo], ) -> ScopeContextManger: """ The ``mb.scope`` creates a context manager, which makes the operations created within it have the corresponding scope information. Parameters ---------- scopes: Optional[List[ScopeInfo]] (Optional) * A list of ScopeInfo under the context manager. * The source in each ScopeInfo cannot be duplicated. * If not provided, this context manager does no affects. Examples -------- The following is an example of creating a scope for torchscript module heirarchy with type and name information. .. sourcecode:: python @mb.program(input_specs=[mb.TensorSpec(shape=(2, 3))]) def prog(x): with mb.scope( ScopeInfo(source=ScopeSource.TORCHSCRIPT_MODULE_TYPE, data=["Module1"]), ScopeInfo(source=ScopeSource.TORCHSCRIPT_MODULE_NAME, data=["module_1"]), ): return mb.add(x=x, y=4.3, name="add_1") In the previous example, the "add_1" op will have two scope attributes, for torchscipt module type and name: * TORCHSCRIPT_MODULE_TYPE: ["Module1"] * TORCHSCRIPT_MODULE_NAME: ["module_1"] The following is an example of creating nested scopes: .. sourcecode:: python @mb.program(input_specs=[mb.TensorSpec(shape=(2, 3))]) def prog(x): with mb.scope( ScopeInfo(source=ScopeSource.TORCHSCRIPT_MODULE_TYPE, data=["Module1"]), ): x = mb.add(x=x, y=4.3, name="add_1") with mb.scope( ScopeInfo(source=ScopeSource.TORCHSCRIPT_MODULE_TYPE, data=["Module2"]), ScopeInfo(source=ScopeSource.TORCHSCRIPT_MODULE_NAME, data=["module_2"]), ): return mb.add(x=x, y=3.2, name="add_2") In the previous example, the "add_1" op would have a scope attribute: * TORCHSCRIPT_MODULE_TYPE: ["Module1"] while the "add_2" op would have scope attributes: * TORCHSCRIPT_MODULE_TYPE: ["Module1", "Module2"] * TORCHSCRIPT_MODULE_NAME: ["module_2"] """ return ScopeContextManger(*scopes)