MIL Ops
Operators supported by the Model Intermediate Language (MIL):
activation (iOS 15+)
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.clamped_relu(**kwargs)[source]
If
x >= 0
return elementwisemin(beta, x)
, otherwise returnmin(beta, alpha * x)
.- Parameters:
- x: tensor<*?, T> (Required)
- alpha: const T (Required)
- beta: const T (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same type and shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.elu(**kwargs)[source]
If
x > 0
return elementwisex
, otherwise returnalpha * (e^x - 1)
.- Parameters:
- x: tensor<*?, T> (Required)
- alpha: const T (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.gelu(**kwargs)[source]
Return the elementwise Gaussian error linear unit activation function for
x
.You can use
EXACT
,TANH_APPROXIMATION
, orSIGMOID_APPROXIMATION
values based on the following formulas:EXACT
:
\[f(x) = 0.5x\left ( 1+\rm{erf}\left ( \frac{x}{\sqrt{2}} \right ) \right )\]TANH_APPROXIMATION
:
\[f(x) = 0.5x\left ( 1+\rm{tanh}\left ( \sqrt{2/\pi}\left ( x + 0.044715x^3 \right ) \right ) \right )\]SIGMOID_APPROXIMATION
:
\[f(x) = x*\rm{sigmoid}(1.702x)\]- Parameters:
- x: tensor<*?, T> (Required)
- mode: const str (Optional)
Use
'EXACT'
,'TANH_APPROXIMATION'
, or'SIGMOID_APPROXIMATION'
forstr
.Default is
'EXACT'
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.leaky_relu(**kwargs)[source]
If
x >= 0
applyx
elementwise, otherwise applyalpha * x
elementwise.- Parameters:
- x: <*?, T> (Required)
- alpha: const T (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.linear_activation(**kwargs)[source]
Apply elementwise
x * alpha + beta
.- Parameters:
- x: tensor<*?, T> (Required)
- alpha: const T (Required)
- beta: const T (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.prelu(**kwargs)[source]
Where
i = 1 ... C
, ifx_i > 0
, returnx_i
, otherwise returnalpha_i * x_i
.- Parameters:
- x: tensor<[B, C, 1..3], T> (Required)
x
must have rank 4, rank 3, or rank 5; that is, a shape of(B,C,H)
,(B,C,H,W)
, or(B,C,D,H,W)
.
- alpha: const tensor<[C], T>, (Required)
The length of
alpha
must match the second dimension ofx
(channel dimension).
- Attributes:
- T: fp32, fp16
- Returns:
- tensor<[B, C, 1..3], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.relu(**kwargs)[source]
Return elementwise-applied rectified linear activation:
max(x, 0)
.- Parameters:
- x: tensor<*?, T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.relu6(**kwargs)[source]
Return elementwise-applied rectified linear activation:
min(max(x, 0), 6)
.- Parameters:
- x: tensor<*?, T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.scaled_tanh(**kwargs)[source]
Return
alpha * tanh(beta * x)
elementwise.- Parameters:
- x: tensor<*?, T> (Required)
Input range is
(-inf, inf)
.
- alpha: const T (Required)
- beta: const T (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.sigmoid(**kwargs)[source]
Return
sigmoid(x)
elementwise.- Parameters:
- x: tensor<*?, T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.sigmoid_hard(**kwargs)[source]
Return
min( max( alpha * x + beta, 0 ), 1 )
elementwise.- Parameters:
- x: tensor<*?, T> (Required)
- alpha: const T (Required)
- beta: const T (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.silu(**kwargs)[source]
Sigmoid Linear Unit, elementwise apply the SiLU or Swish operation
x * sigmoid(x)
.- Parameters:
- x: tensor<*, T>
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*, T>
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.softplus(**kwargs)[source]
Return
log( 1 + e^x )
elementwise.- Parameters:
- x: tensor<*?, T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.softplus_parametric(**kwargs)[source]
Return
alpha_i * log( 1 + e^( beta_i * x_i ) )
, wherei = 1 ... C
.- Parameters:
- x: tensor<[b, C, n, m], T> (Required)
- alpha: const tensor<[C], T> (Required)
- beta: const tensor<[C], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[b, C, n, m], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.activation.softmax(**kwargs)[source]
Return
exp(x) / tf.reduce_sum(tf.exp(x), axis)
.- Parameters:
- x: tensor<*?, T> (Required)
- axis: const i32 (Optional)
Default is
-1
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
activation (iOS 17+)
- class coremltools.converters.mil.mil.ops.defs.iOS17.activation.clamped_relu(**kwargs)[source]
If
x >= 0
return elementwisemin(beta, x)
, otherwise returnmin(beta, alpha * x)
.The major difference between this version and the iOS 15
clamped_relu
is that thealpha
andbeta
may have a different dtype than the input/output.- Parameters:
- x: tensor<*?, T> (Required)
- alpha: const U (Required)
- beta: const U (Required)
- Attributes:
- T: fp16, fp32
- U: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same type and shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.activation.elu(**kwargs)[source]
If
x > 0
return elementwisex
, otherwise returnalpha * (e^x - 1)
.The major difference between this version and the iOS 15
elu
is that thealpha
may have a different dtype than the input/output.- Parameters:
- x: tensor<*?, T> (Required)
- alpha: const U (Required)
- Attributes:
- T: fp16, fp32
- U: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.activation.leaky_relu(**kwargs)[source]
If
x >= 0
applyx
elementwise, otherwise applyalpha * x
elementwise.The major difference between this version and the iOS 15
leaky_relu
is that thealpha
may have a different dtype than the input/output.- Parameters:
- x: <*?, T> (Required)
- alpha: const U (Required)
- Attributes:
- T: fp16, fp32
- U: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.activation.linear_activation(**kwargs)[source]
Apply elementwise
x * alpha + beta
.The major difference between this version and the iOS 15
linear_activation
is that thealpha
andbeta
may have a different dtype than the input/output.- Parameters:
- x: tensor<*?, T> (Required)
- alpha: const U (Required)
- beta: const U (Required)
- Attributes:
- T: fp16, fp32
- U: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.activation.prelu(**kwargs)[source]
Where
i = 1 ... C
, ifx_i > 0
, returnx_i
, otherwise returnalpha_i * x_i
.The major difference between this version and the iOS 15
prelu
is that thealpha
may have a different dtype than the input/output.- Parameters:
- x: tensor<[B, C, 1..3], T> (Required)
x
must have rank 4, rank 3, or rank 5; that is, a shape of(B,C,H)
,(B,C,H,W)
, or(B,C,D,H,W)
.
- alpha: const tensor<[C], U>, (Required)
The length of
alpha
must match the second dimension ofx
(channel dimension).
- Attributes:
- T: fp32, fp16
- U: fp16, fp32
- Returns:
- tensor<[B, C, 1..3], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.activation.scaled_tanh(**kwargs)[source]
Return
alpha * tanh(beta * x)
elementwise.The major difference between this version and the iOS 15
scaled_tanh
is that thealpha
andbeta
may have a different dtype than the input/output.- Parameters:
- x: tensor<*?, T> (Required)
Input range is
(-inf, inf)
.
- alpha: const U (Required)
- beta: const U (Required)
- Attributes:
- T: fp16, fp32
- U: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.activation.sigmoid_hard(**kwargs)[source]
Return
min( max( alpha * x + beta, 0 ), 1 )
elementwise.The major difference between this version and the iOS 15
sigmoid_hard
is that thealpha
andbeta
may have a different dtype than the input/output.- Parameters:
- x: tensor<*?, T> (Required)
- alpha: const U (Required)
- beta: const U (Required)
- Attributes:
- T: fp16, fp32
- U: fp16, fp32
- Returns:
- tensor<*?, T>
A tensor of the same shape and type as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.activation.softplus_parametric(**kwargs)[source]
Return
alpha_i * log( 1 + e^( beta_i * x_i ) )
, wherei = 1 ... C
.- Parameters:
- x: tensor<[b, C, n, m], T> (Required)
- alpha: const tensor<[C], U> (Required)
- beta: const tensor<[C], U> (Required)
- Attributes:
- T: fp16, fp32
- U: fp16, fp32
- Returns:
- tensor<[b, C, n, m], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.activation.thresholded_relu(**kwargs)[source]
Return
x
ifx >= alpha
, otherwise return0
.The major difference between this version and the iOS 15
thresholded_relu
is that thealpha
may have a different dtype than the input/output.- Parameters:
- x: tensor<*?, T> (Required)
- alpha: const U (Required)
- Attributes:
- T: fp16, fp32
- U: fp16, fp32
- Returns:
- tensor<*, T>
A tensor of the same shape and type as
x
.
classify
- class coremltools.converters.mil.mil.ops.defs.iOS15.classify.classify(**kwargs)[source]
The presence of this op indicates that the model is of type classifier. The op constructs the model output accordingly; that is, the predicted class label and the output probability dictionary. The parameters of this op are set based on the attributes set for the coremltools.ClassifierConfig class by the user. The outputs of this op cannot be used by another op.
- Parameters:
- probabilities: tensor<[* , ProbT]> (Required)
A tensor in the graph, which is used to compute the classifier output(s). This is the tensor whose values are mapped to the class labels and used for constructing the predicted class label and the output dictionary of class names and values.
- classes: list<*, ClassT> (Required)
List of classes.
- Attributes:
- ProbT: fp32
- ClassT: i64, str
- Returns:
- <classT>
- Dict[classT, probT]
constexpr_ops (iOS 16+)
- class coremltools.converters.mil.mil.ops.defs.iOS16.constexpr_ops.constexpr_affine_dequantize(**kwargs)[source]
A compile-time operation that returns a constant output value upon dequantizing its constant inputs.
This operation is used to represent constant 8-bit quantized data with affine/linear quantization. The quantized data is stored in the parameter
quantized_data
. The other parameters –scale
,zero_point
, andaxis
– describe how unquantized values can be extracted from it, using the equation for affine/linear quantization:unquantized_data = scale * (quantized_data - zero_point)
Although all of the parameters of this op are constants, this op is not constant folded to a single const op at the time of model serialization. The unquantized output will be decompressed later, based on the implementation detail (either at model load time or runtime).
- Parameters:
- quantized_data: const tensor<SrcT, [1..]> (Required)
- zero_point: const tensor<ZeroPointT, [0..1]> (Required)
zero_point
can be either a scalar or a vector.zero_point
follows similar broadcasting rules and size constraints asscale
.
- scale: const tensor<DstT, [0..1]> (Required)
scale
can be either a scalar or a vector.- If
scale
is a vector, for implementation it is broadcast to the following shape: The rank of
scale
becomes the same as the rank ofquantized_data
.The constraint:
size(scale-vector) == quantized_data.shape[axis]
.For
i == axis
,scale.shape[i] == quantized_data.shape[i]
.For
i != axis
,scale.shape == 1
. For example, assumequantized_data.shape = (2, 3, 4, 5)
andaxis = 1
. Ifscale
is a vector, thenscale.size
needs to be equal toquantized_data.shape[axis] i.e = 3
, which would be broadcast to(1, 3, 1, 1)
.
- If
- axis: const tensor<int32, []> (Required)
- Attributes:
- SrcT: uint8, int8
- ZeroPointT: uint8, int8, fp32
- DstT: fp16, fp32
- Returns:
- const tensor<DstT, [1..]>
- class coremltools.converters.mil.mil.ops.defs.iOS16.constexpr_ops.constexpr_cast(**kwargs)[source]
A compile-time operation that returns a constant output value upon casting its constant input.
Expression: output = constexpr_cast(source_val, output_dtype="fp32")
- Parameters:
- source_val: const tensor<SrcT, […]> (Required)
- output_dtype: const tensor<string, []> (Required)
- Attributes:
- SrcT: fp16
- DstT: fp32
- Returns:
- const tensor<DstT, […]>
- class coremltools.converters.mil.mil.ops.defs.iOS16.constexpr_ops.constexpr_lut_to_dense(**kwargs)[source]
A compile-time operation that returns a constant output value upon decompressing a look-up table (LUT) to a dense tensor.
This operation is used to store constant weights in a LUT format (also known as palettized weights). A LUT is a mapping from index to values. Weights are quantized and stored as indices (or keys) into the LUT. Before computation, these keys are mapped to corresponding values in the LUT.
- Parameters:
- indices: const tensor<uint8, [M]> (Required)
- lut: const tensor<T, [NUM_PALETTES]> (Required)
- shape: const tensor<uint32, [K]> (Required)
- Attributes:
- T: uint8, int8, fp16, fp32
- Returns:
- const tensor<T, […]>
Notes
Any data is packed and read in a row-major order.
NUM_PALETTES
can be one of{2, 4, 16, 64 or 256}
.n_bits = log2(NUM_PALETTES)
can thus be one of{1, 2, 4, 6, 8}
.Indices are packed in bytes of size
M
, whereM = ceil(n_bits * product(shape) / 8)
.
The bit fields are packed one byte at a time, starting with the least significant bit (LSB) and moving upward to the most significant bit (MSB). It follows, naturally, that if an index is split across two bytes, the LSBs of that index is filled over the MSBs of current byte, and the remaining bits of the same index are filled in the LSBs of the next byte.
For example:
if n_bits = 2, shape = (5,) => M = 2 bytes MSB LSB | | indices = | 01 10 11 00 | xx xx xx 11 | <== packed elements | i3 | i2 | i1 | i0 | -- | -- | -- | i4 | <== tagged element ids | byte 0 | byte 1 | <== tagged bytes
- class coremltools.converters.mil.mil.ops.defs.iOS16.constexpr_ops.constexpr_sparse_to_dense(**kwargs)[source]
A compile-time operation that returns a constant output value upon de-sparsification of its constant inputs.
This operation represents unstructured sparsity and uses bit mask binary representation. If a bit is set, then the corresponding element in the output tensor is non-zero and the value is read from the
nonzero_data
attribute. Likewise, if the bit is not set, then the corresponding element in the output tensor is zero.- Parameters:
- nonzero_data: const tensor<T, [D]> (Required)
- mask: const tensor<uint8, [M]> (Required)
- shape: const tensor<uint32, [K]> (Required)
- Attributes:
- T: uint8, int8, fp16, fp32
- Returns:
- const tensor<T, […]>
Notes
Any data is packed and read in a row-major order.
mask
containsM
bytes, whereM = ceil( product(shape) / 8)
. That is, each bit field corresponds to one element in the output tensor.D ==
the total number of set bits inmask
.
The bit fields are packed one byte at a time, starting with the least significant bit and moving up to the most significant bit.
For example:
shape = (5,) => M = 1 bytes MSB LSB | | mask = |x x x 0 1 1 0 0 | <== packed elements |--|--|--|i4|i3|i2|i1|i0| <== tagged element ids | byte 0 | <== tagged bytes
constexpr_ops (iOS 18+)
- class coremltools.converters.mil.mil.ops.defs.iOS18.compression.constexpr_blockwise_shift_scale(**kwargs)[source]
A compile-time operation that returns a constant output value upon dequantizing its constant inputs.
It’s similar to iOS 16
constexpr_affine_dequantize
, but supports block-wise quantization for int4 and int8.Although all parameters of this op are constants, this op is not constant-folded to a single const op at the time of model serialization. The unquantized output will be decompressed later, based on the implementation detail (either at model load time or runtime).
Generic expression: output = scale * (data - offset)
- Algorithm:
- Assuming Rank 3 scenario:
output_data[i, j, k] = scale[i0, j0, k0] * (data[i, j, k] - offset[i0, j0, k0]) where
i0 = floor(i/block_size[0]), j0 = floor(j/block_size[1]), k0 = floor(k/block_size[2])
The block size is implied by block_size[m] = data.shape[m] / scale.shape[m]
Constraints: - All tensors: scale, data, offset and output have same rank. - Inputs: scale and offset (if provided) have same shape. - Output shape is same as the shape of input argument: data. - Number of scales along each dimension should be a factor of corresponding dimension size of
data. That is, block_size[i] should be an integer where block_size[i] = data.shape[i] / scale.shape[i]
- Parameters:
- data: const tensor<SrcT, [1..]> (Required)
- scale: const tensor<DstT, [1..]> (Required)
- offset: const tensor<OffsetT, [1..]> (Optional)
If provided, must have the same shape as the
scale
.If dtype is not fp16 or fp32, it must be the same as SrcT.
- Attributes:
- SrcT: int4, uint4, int8, uint8, fp16, fp32
- DstT: fp16, fp32
- OffsetT: int4, uint4, int8, uint8, fp16, fp32
- Returns:
- const tensor<DstT, [1..]>
- class coremltools.converters.mil.mil.ops.defs.iOS18.compression.constexpr_lut_to_dense(**kwargs)[source]
A compile-time operation that returns a constant output value upon dequantizing its constant inputs.
This operator is used to store constant weights in lookup tables format (aka palettized weights). It’s similar to iOS 16
constexpr_lut_to_dense
, but supports block-wise / vector palettization.LUT’s rank is K + 2, where K is the rank of indices. Each dimension of LUT’s first K dimensions should be divisible by each corresponding dimension of the decompressed tensor. e.g., when indices_shape = [2, 3, 4], lut_shape[:3] = [1, 1, 2], it means that there are two lookup tables over the last axis. And each of them have their own LUT values. See Case 1 below for details.
VECTOR_SIZE is added to support vector palettization. - When VECTOR_SIZE is 1, it is scalar palettization. - When VECTOR_SIZE is larger than 1, it retrieves a vector instead of a single value from the
lookup table, and fill the result continuously.
The vector_axis is used to define which axis the vectored elements in the lookup table be filled across the output tensor. vector_axis is only optional if VECTOR_SIZE is 1. As a result:
output_shape[i] = indices_shape[i] , i != vector_axis output_shape[i] = indices_shape[i] * VECTOR_SIZE, i == vector_axis
See Case 2 below for details.
Examples
- Case 1: per-group scalar palettization:
e.g.: - indices = tensor<uint2, [6, 2]>>([2, 3, 3, 0, 1, 0, 3, 0, 2, 1, 0, 3]) - lut = tensor<fp16, [2, 1, 4, 1]>([1.0, 5.0, 9.0, 13.0, 2.0, 10.0, 18.0, 26.0])
It is effectively a 2-group 2-bit scalar palettization. The output shape would be [6, 2], which is the same as the indices shape. The output tensor values are: [[lut0[2]->9.0, lut0[3]->13.0],
[lut0[3]->13.0, lut0[0]->1.0], [lut0[1]->5.0, lut0[0]->1.0], [lut1[3]->26.0, lut1[0]->2.0], [lut1[2]->18.0, lut1[1]->10.0], [lut1[0]->2.0, lut1[3]->26.0]]
where lut0 is the first lookup table (lut[0, :, :, :]) and lut1 is the second lookup table.
- Case 2: per-tensor vector palettization:
e.g.: - indices = tensor<uint1, [2, 2, 2]>>. The indices values are:
- [
- [
[0, 0], [1, 0]
], [
[1, 1], [0, 0]
]
]
- lut = tensor<int8, [1, 1, 1, 2, 3]>([a0, a1, a2,
b0, b1, b2])
which means the two centroids are [a1, a2, a3] and [b1, b2, b3].
- Case 2.1: vector_axis = 1
It is effectively a 1-bit vector palettization. The output shape would be [2, 2*3, 2], where each index in the indices would be effectively replaced with the 3 elements in the vector over the 1st dimension to construct the output tensor. The output values are: [
- [
[a0, a0], [a1, a1], [a2, a2], [b0, a0], [b1, a1], [b2, a2],
], [
[b0, b0], [b1, b1], [b2, b2], [a0, a0], [a1, a1], [a2, a2],
]
]
- Case 2.2: vector_axis = 2
The output shape would be [2, 2, 2*3], where each index in the indices would be effectively replaced with the 3 elements in the vector over the last dimension to construct the output tensor. The output values are: [
- [
[a0, a1, a2, a0, a1, a2], [b0, b1, b2, a0, a1, a2],
], [
[b0, b1, b2, b0, b1, b2], [a0, a1, a2, a0, a1, a2],
]
]
- Parameters:
- indices: const tensor<IndicesT, [1..]> (Required)
- lut: const tensor<T, [1.., NUM_PALETTES, VECTOR_SIZE]> (Required)
NUM_PALETTES needs to be 2^nbits where nbits is indicated by IndicesT.
- vector_axis: const tensor<int32, []> (Optional)
vector_axis can be optional if VECTOR_SIZE is 1.
- Attributes:
- IndicesT: uint1, uint2, uint3, uint4, uint6, uint8
- T: uint8, int8, fp16, fp32
- Returns:
- const tensor<T, [1..]>
output_shape = indices_shape * [1..1, VECTOR_SIZE, 1..1] (all 1 but VECTOR_SIZE at vector_axis dimension).
- class coremltools.converters.mil.mil.ops.defs.iOS18.compression.constexpr_sparse_to_dense(**kwargs)[source]
A compile-time operation that returns a constant output value upon de-sparsification of its constant inputs.
The differences from iOS16
constexpr_sparse_to_dense
are: - In iOS16, the mask parameter is ‘const tensor<uint8, [M]>’, which is a flat tensor with lengthM, so it requires a parameter shape to determine the output shape. In iOS18, we use uint1 (0 or 1) to represent bitmask, which packs the bitmask data and costs the same memory as the uint8 mask in iOS16, but can explicitly tell the tensor shape. We use uint1 instead of bool because bool in MIL uses uint8 as the storage dtype, which costs 8x memory compared to uint1.
Support more dtypes (int4 and uint4) for the input/output data.
- Parameters:
- nonzero_data: const tensor<T, [D]> (Required)
- mask: const tensor<uint1, [1..]> (Required)
- Attributes:
- T: int4, uint4, int8, uint8, fp16, fp32
- Returns:
- const tensor<T, [1..]>
- class coremltools.converters.mil.mil.ops.defs.iOS18.compression.constexpr_lut_to_sparse(**kwargs)[source]
A compile-time operation that returns a constant output value upon de-palettizing its constant inputs.
This op is a sparse-to-sparse op to support constexpr_lut_to_dense on sparse data, where the de-palettization is only applied on the nonzero data. Usually it would be followed by a constexpr_sparse_to_dense op to get the dense tensor. So, parameters of this op are similar to constexpr_sparse_to_dense and constexpr_lut_to_dense. For detailed descriptions about its parameters, please refer to iOS 18
constexpr_sparse_to_dense
andconstexpr_lut_to_dense
.- This op has two outputs:
the mask of the de-palettized nonzero_data.
the de-palettized nonzero_data.
- Parameters:
- indices_mask: const tensor<uint1, [1..]> (Required)
- indices_nonzero_data: const tensor<IndicesT, [D]> (Required)
- lut: const tensor<T, [1.., NUM_PALETTES, VECTOR_SIZE]> (Required)
NUM_PALETTES needs to be 2^nbits where nbits is indicated by IndicesT.
- vector_axis: const tensor<int32, []> (Optional)
vector_axis can be optional if VECTOR_SIZE is 1.
- Attributes:
- IndicesT: uint1, uint2, uint3, uint4, uint6, uint8
- T: uint8, int8, fp16, fp32
- Returns:
- const tensor<uint1, [1..]>
the mask of the de-palettized nonzero_data. For scalar palettization, it’s the same as the input indices_mask. For vector palettization, it’s expanded of the indices_mask over axis=vector_axis.
- const tensor<T, [VD]>
the de-palettized nonzero_data. For scalar palettization, VD=D (same size as indices_nonzero_data). For vector palettization, VD=VECTOR_SIZE * D (each entry is expanded by a vector).
Examples
- Assume we have the following inputs:
- indices_mask<uint1, [4, 6]> = [[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 0, 0, 1, 0, 0]]
indices_nonzero_data<uint1, [9]> = [0, 1, 1, 0, 1, 1, 0, 0, 1]
Notice that: - The uint1 in indices_mask and indices_nonzero_data has different meanings. For
indices_mask the dtype is always uint1 to represent bit mask. For indices_nonzero_data the uint1 means the LUT only has two entries, so only 1 bit is needed to represent indices.
The 0 in indices_mask and indices_nonzero_data has different meanings. For indices_mask the 0 means empty entry in sparse representation. For indices_nonzero_data the 0 means index 0 in LUT.
- With the given indices_mask and indices_nonzero_data, an example for “Scalar Palettization”:
lut<fp16, [1, 1, 2, 1]> = [2.0, 3.0] (indices-to-values mapping is {0: 2.0, 1: 3.0})
The sparse indices in the dense layout would look like: 0 1 . . . . 1 0 . . . 1 . 1 0 . 0 . . . . 1 . . (here “.” means spare elements in sparse representation)
When we apply per-tensor de-palettization with this sparse indices, the indices_nonzero_data is used to read the values from the LUT as in the dense layout. The output sparse tensor in the dense layout would be: 2.0 3.0 . . . . 3.0 2.0 . . . 3.0
. 3.0 2.0 . 2.0 . . . . 3.0 . .
The first output would be the same as the indices_mask. The second output would be [2.0, 3.0, 3.0, 2.0, 3.0, 3.0, 2.0, 2.0, 3.0]
- With the given indices_mask and indices_nonzero_data, an example for “Vector Palettization”:
lut<fp16, [1, 1, 2, 2] = [[2.0, 2.0], [3.0, 3.0]] vector_axis = 0
The first output would be the expanded mask of the indices_mask over axis=0, which is: output<uint1, [8, 6]> = [
[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0],
] The second output in the dense layout would be: 2.0 3.0 . . . . 2.0 3.0 . . . . 3.0 2.0 . . . 3.0 3.0 2.0 . . . 3.0
. 3.0 2.0 . 2.0 . . 3.0 2.0 2.0 . . . . 3.0 . . . . . 3.0 . .
It is created by fetching the vector entry from the lut for every bit 1 in the data_mask, and filling the vector over axis=0.
Those two outputs of this op could be passed as inputs to a following sparse_to_dense op in order to recover the dense weights.
- class coremltools.converters.mil.mil.ops.defs.iOS18.compression.constexpr_sparse_blockwise_shift_scale(**kwargs)[source]
A compile-time operation that returns a constant output value upon de-quantize (shift-scale) its constant inputs. This op is a sparse-to-sparse op to support constexpr_blockwise_shift_scale on sparse data, where the de-quantization is only applied on the nonzero data. Usually it would be followed by a constexpr_sparse_to_dense op to get the dense tensor. So, parameters of this op are similar to constexpr_sparse_to_dense and constexpr_blockwise_shift_scale. For detailed descriptions about its parameters, please refer to iOS 18
constexpr_sparse_to_dense
andconstexpr_blockwise_shift_scale
.- This op has two outputs:
the mask of the de-quantized nonzero_data.
the de-quantized nonzero_data.
- Parameters:
data_mask (const tensor<uint1, [1..]> (Required))
nonzero_data (const tensor<SrcT, [D]> (Required))
scale (const tensor<DstT, [1..]> (Required))
offset (const tensor<OffsetT, [1..]> (Optional)) –
If provided, must have the same shape as the
scale
.
- Returns:
- const tensor<uint1, [1..]>
the mask of the shift-scaled nonzero_data.
- const tensor<DstT, [D]>
the shift-scaled nonzero_data.
- Attributes
- SrcT: int4, uint4, int8, uint8, fp16, fp32
- DstT: fp16, fp32
- OffsetT: int4, uint4, int8, uint8, fp16, fp32
- Examples
- For example:
data_mask = [[1, 1, 0, 0], [1, 1, 1, 0], [0, 0, 1, 1], [1, 1, 0, 0]] nonzero_data = [10, 11, 3, 4, 5, 6, 7, 8, 9] The sparse tensor in the dense layout would look like:
- 10 11 . .
3 4 5 . . . 6 7 8 9 . .
When we apply per-channel de-quantization on this sparse tensor, where: scale = [[0.1, 0.2, 0.3, 0.4]] offset = [[1, 2, 3, 4]] The input nonzero_data would be dequantized per-column as in the dense layout, and the output sparse tensor in the dense layout would be:
(10-1)*0.1 (11-2)*0.2 . . (10-1)*0.1 (11-2)*0.2 . .
- (3-1)*0.1 (4-2)*0.2 (5-3)*0.3 .
. . (6-3)*0.3 (7-4)*0.4
(8-1)*0.1 (9-2)*0.2 . .
The first output would be the same as the data_mask, The second output would be [0.9, 1.8, 0.2, 0.4, 0.6, 0.9, 1.2, 0.7, 1.4]. The two outputs could be passed as inputs to the following sparse_to_dense op in order to get the dense weights.
- class coremltools.converters.mil.mil.ops.defs.iOS18.compression.constexpr_cast(**kwargs)[source]
A compile-time operation that returns a constant output value upon casting its constant input.
The only difference between this version and the iOS 16
constexpr_cast
is the parameters are treated as inputs, instead of attributes in the MIL backend framework.
control_flow
- class coremltools.converters.mil.mil.ops.defs.iOS15.control_flow.cond(**kwargs)[source]
Perform a conditional execution. The return types must be identical between the true and false branches.
- Parameters:
- pred: tensor<[], bool> (Required)
0-D tensor (scalar) predicate to switch between true and false branches.
- _true_fn: function (Required)
A Python function that executes if
pred
evaluates toTrue
.It must take zero input (i.e, no input), and return one or more values whose type becomes the operation’s return type.
- _false_fn: function (Required)
A Python function that executes if
pred
evaluates toFalse
.It must take zero input (i.e. no input), and have return types that match those of the
if
branch.
- _existing_blocks: list[Block] (Optional)
Python list of
Block
.For internal use only. When converting a milproto, we already got existing blocks, and the
build_nested_blocks
function can use them directly.When
_existing_blocks
is set,_true_fn
and_false_fn
must be dummy functions which returnsNone
.
- Returns:
- tuple
Python tuple of
Variables
from one of the branches.
- class coremltools.converters.mil.mil.ops.defs.iOS15.control_flow.Const(**kwargs)[source]
A base class that returns constant values.
- Parameters:
- val: const<*,T> (Required)
- mode: immediate_value, file_value (Optional)
Determines how the constant value is stored in the internal MIL format.
For large constants such as convolution weights, use
file_value
.For smaller-size constants such as values of a stride, use
immediate_value
.
- Attributes:
- T: fp16, fp32, i32, str, bool
- Returns:
- const<*,T>
- class coremltools.converters.mil.mil.ops.defs.iOS15.control_flow.select(**kwargs)[source]
Return the elements selected from either
a
orb
depending on thecond
.You must provide
a
,b
andcond
. The shape ofcond
,a
, andb
must be broadcastable.- Parameters:
- cond: tensor<[*D1], B> (Required)
Tensor. When
True
, select element fromx
, otherwise,y
.
- a: tensor<[*D2], T> (Optional)
Values selected at indices where
cond
isTrue
.Default is
None
.
- b: tensor<[*D3], T> (Optional)
Values selected at indices where
cond
isFalse
.Default is
None
.
- Attributes:
- B: bool
- T: fp16, fp32, i32, bool
- Returns:
- tensor<[*D_out], T> or tensor<[n, len(D1)], int32>
If
a, b
are both provided, the return shape is based on broadcast rules fromcond, a, b
.If
a, b
areNone
, the return shape is 2-D, where the first dimensionn
is the number of matching indices incond
, andlen(D1)
is the rank ofcond
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.control_flow.while_loop(**kwargs)[source]
Perform the body repeatedly while the condition
cond
is true.- Parameters:
- _cond: function (Required)
A Python function that takes
loop_vars
as positional arguments.The function must return a
bool
Var
.
- _body: function (Required)
A Python function that takes
loop_vars
as positional arguments.The function must return the same number of output vars as
loop_vars
with the same types.
- loop_vars: tuple (Required)
Python tuple of
Variables
.
- _existing_blocks: list[Block] (Optional)
Python list of
Block
.For internal use only. When converting a milproto, we already got existing blocks, and the
build_nested_blocks
function can use them directly.When
_existing_blocks
is set,_cond
and_body
must be dummy functions which returnsNone
.
- Returns:
- tuple
Python tuple (same type as
loop_vars
).
- class coremltools.converters.mil.mil.ops.defs.iOS15.control_flow.make_list(**kwargs)[source]
Create a list of tensor elements. The elements should have the same shape. The list is similar to an auto-resizing array.
- Parameters:
- init_length: <i32> (Optional, Default=1)
Initial length for the list.
If
dynamic_length
isFalse
,init_length
is the fixed length of the list throughout runtime.
- dynamic_length: <bool> (Optional, Default is True)
- elem_shape: Tuple[const<T>] (Required)
1-D vector denoting the shape of elements.
If
T = int32
, the element shape is known at compile time.T = string
denotes the symbolic shape, in which the shape is determined at runtime.If not provided, the resulting
List
won’t have the elementary shape info, which may cause backend errors. Remedy this with SSA passes.
- dtype: const (Optional, Default is fp32)
Possible values:
{"bool", "fp16", "fp32", "int32"}
Element tensor’s
dtype
.
- Attributes:
- T: i32, string
- Returns:
- List[*]
- class coremltools.converters.mil.mil.ops.defs.iOS15.control_flow.list_length(**kwargs)[source]
Return the length of
ls
.- Parameters:
- ls: List[*] (Required)
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- <i32>
Length of
ls
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.control_flow.list_write(**kwargs)[source]
Write a value into index
index
ofls
.- Parameters:
- ls: List (Required)
- index: <i32> (Required)
Size of the list.
- value: <*,T> (Optional)
Element value to write, which must match the element shape of
ls
.Default is
None
.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- List[*]
- class coremltools.converters.mil.mil.ops.defs.iOS15.control_flow.list_read(**kwargs)[source]
Read the value at location
index
ofls
.- Parameters:
- ls: List[*] (Required)
- index: <i32> (Required)
Size of the list.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- <*,T>
The element’s value.
- class coremltools.converters.mil.mil.ops.defs.iOS15.control_flow.list_gather(**kwargs)[source]
Return selected values in
ls
as a packedTensor
.- Parameters:
- ls: List[*] (Required)
- indices: <K,i32> (Required)
Gather from indices, whose element must be in
[0, ls.length)
at runtime.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- <*K,T>
Selected tensors packed into a
len(ls.elem_shape)+1
rank tensor.K[0] == len(indices)
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.control_flow.list_scatter(**kwargs)[source]
Scatter
values
tols
at locationsindices
.- Parameters:
- ls: List[*] (Required)
- indices: tensor<num_updates, i32> (Required)
Indices of
ls
to scatter to.Elements of
indices
must be in[0, ls.length)
at runtime.If indices are greater than or equal to the list length, the list is dynamically resized.
- value: <*,T> (Optional)
Element value to write, which must match the element shape of
ls
.Default is
None
.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- List[*]
Updated list.
conv (iOS 15+)
- class coremltools.converters.mil.mil.ops.defs.iOS15.conv.conv(**kwargs)[source]
Perform convolution over input. Supports 1-D, 2-D, and 3-D convolution.
- Parameters:
- x: tensor<[n, C_in, *d_in], T> (Required)
d_in
are (possibly runtime-determined) spatial dimensions. For example,d_in = [224, 224]
for 2D convolution.1 <= len(d_in) <= 3
.C_in
is the number of input channels or depth dimensions.n
is the batch dimension.
- weight: tensor<[C_out, C_in/groups, *K], T> (Required)
Filter weights.
C_in
is the number of input channels.C_in
must be divisible bygroups
.K
are kernel sizes. For example,K = [KH, KW]
for 2-D convolution.When
dilations
is not all1
,weight
has to beconst
at compile time
- strides: const tensor<[S], i32> (Optional)
Default to one vector of length equal to the number of spatial dimensions.
Strides along each of the spatial dimensions.
S == len(d_in)
.
- pad_type: const str (Required)
Must be one of the following:
valid
: No padding. This is equivalent to custom pad withpad[2*i] == pad[2*i+1] == 0, for i=0,...,len(d_in)-1
.custom
: Specify custom padding in the parameterpad
.same
: Input is padded such that out spatial shapes ared_out[i] = ceil(d_in[i] / strides[i])
.same_lower
: Similar tosame
but the padding will place extra rows/cols on the top/left if the padding amount is odd.
Specifically, for
i = 0,..,,len(d_in)-1
, the equivalent paddings are calculated as follows:dilated_kernel = (K[i] - 1) * dilate[i] + 1
If
dilated_kernel
is odd,padding[2*i] = padding[2*i+1] = floor(dilated_kernel / 2)
Otherwise:
padding[2*i] = ceil((dilated_kernel - 1) / 2)
,padding[2*i+1] = floor((dilated_kernel - 1) / 2)
- pad: const tensor<[P], i32> (Optional. Default to all zeros)
len(P) = 2 * len(d_in)
pad
should be specified if and only ifpad_type == custom
, otherwise errors occur.pad
represents the number of elements to pad before and after each dimension. Specifically,pad[0], pad[1]
are the pad size before / after spatial dimension 0,pad[2], pad[3]
are the pad size before / after spatial dimension 1, etc.
- dilations: const tensor<[S], i32> (Optional. Default to all 1s)
Dilation value along each spatial dimension in
d_in
. See visualization.S == len(d_in)
.
- groups: const tensor<[], i32> (Optional, default to 1)
Input and output channels are split by
groups
.C_in
must be divisible bygroups
.Maximum value for group is
C_in
, in which case it is a depthwise convolution.
For examples (assuming
C_in = 16, C_out = 32
):groups == 1
,weight
has shape[32, 16, KH, KW]
: All input channels are convolved with theweight
kernel to produce all output channels.groups == 2
,weight
has shape[32, 8, KH, KW]
: Input channels 0~7 are convolved with half of theweight
kernel to produce output channels 0~15. Similarly, input channels 8~15 are convolved with the other half ofweight
to product output channels 16~31.groups == C_in
,weight
has shape[32, 1, KH, KW]
: Each input channel is convolved with its own set of filters and each produceC_out / C_in = 2
channels. This is equivalent to depthwise convolution.
- bias: const tensor<[C_out],T> (Optional, default to all 0)
Bias along output channels.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n, C_out, *d_out], T>
Output activation has the same rank and spatial dimension as the input. That is,
len(d_out) == len(d_in)
.For
i=0,..,len(d_in)-1, d_out[i] = floor [(D_in[i] + pad[2*i] + pad[2*i+1] - (K[i]-1)*dilations[i] - 1) / strides[i] ] + 1
.
See also
- class coremltools.converters.mil.mil.ops.defs.iOS15.conv.conv_transpose(**kwargs)[source]
Perform transposed convolution (also known as deconvolution and fractionally stride convolution) over input.
conv_transpose
can also be used to compute the gradient of conv. Supports 1-D, 2-D, and 3-D convolution.- Parameters:
- x: tensor<[n,C_in,*D_in],T> (Required)
Input data.
D_in
are spatial dimensions.1 <= len(D_in) <= 3
.C_in
is the number of input channels.
- weight: const tensor<[C_in,C_out/groups,*D_in], T> (Required)
Filter weights.
C_in, C_out
are the number of input and output channels respectively.D_in
are spatial dimensions.1 <= len(D_in) <= 2
.
- bias: const tensor<[C_out],T> (Optional, default to all 0)
Bias added along output channels.
- pad: const tensor<[P],i32> (Optional, default to all 0s)
Number of elements to pad before and after each dimension.
P == 2 * len(D_in)
.pad[2*i], pad[2*i+1]
are pad sizes before and after dimensioni
, where0 <= i < len(D_in)
.
- output_shape: const tensor<[P],i32> (Optional, default None)
Expected output shape. The first two dimensions must be
[n, C_out]
.The output shape of
conv_transpose
is underdetermined in general, becauseconv
can map multiple input shapes to a single output shape. For example, forsame
padding mode,conv_out = ceil(conv_in/stride)
. Hence we needoutput_shape
when this occurs.
- pad_type: const tensor<[P],i32> (Optional, default valid)
One of
same
,valid
, orcustom
.
- strides: const tensor<[S],i32> (Optional. Default to all 1s)
Stride along each of the spatial dimensions.
S == len(D_in)
.
- dilations: const tensor<[S],i32> (Optional. Default to all 1s)
Dilation value along each spatial dimension in
d_in
. Seeconv
.S == len(D_in)
.
- groups: const tensor<[], i32> (Optional. Default to 1)
Input and output channels are separated into
groups
.C_in
andC_out
must be divisible by the number of groups. Seeconv
for examples.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n,C_out,*D_out],T>
If
output_shape
is notNone
:Dout = output_shape
If
pad_type == "custom"
:Dout[i] = (D_in[i]-1)*stride[i] + (K[i]-1) * dilation[i] + 1 - pad[2*i] - pad[2*i-1]
If
pad_type == "valid"
:Dout[i] = (D_in[i]-1)*stride[i] + (K[i]-1) * dilation[i] + 1
If
pad_type == "same"
:Dout[i] = D_in[i] * stride[i]
See also
conv (iOS 17+)
- class coremltools.converters.mil.mil.ops.defs.iOS17.conv.conv(**kwargs)[source]
Perform convolution over input. Supports 1-D, 2-D, and 3-D convolution.
The difference between this version and the iOS 15
conv
is that theweight
andbias
may have a different dtype than the input/output.
- class coremltools.converters.mil.mil.ops.defs.iOS17.conv.conv_transpose(**kwargs)[source]
Perform transposed convolution (also known as deconvolution and fractionally stride convolution) over input.
conv_transpose
can also be used to compute the gradient of conv. Supports 1-D, 2-D, and 3-D convolution.The differences between this version and the iOS 15
conv_transpose
are: -weight
andbias
may have a different dtype than the input/output. -weight
doesn’t have to be const.
coreml_update_state
- class coremltools.converters.mil.mil.ops.defs.coreml_dialect.ops.coreml_update_state(**kwargs)[source]
Copy the content of a variable into a state and return the copy of the variable. The type of the variable must match the type that is wrapped inside the state. This is a coreml dialect op to simplify the program. When loading into MIL, the following transformation is done:
%x = coreml_update_state(state=%state, value=%value) --> write_state(state=%state, value=%value) %x = read_state(input=%state)
- Parameters:
- state: state<ST> (Required)
- value: ST (Required)
- Attributes:
- ST: tensor
- Returns:
- ST
elementwise_binary
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.add(**kwargs)[source]
Return
x + y
element-wise with broadcasting.- Parameters:
- x: <*,T> (Required)
Shape must be compatible with
y
in broadcast.
- y: <*,T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- <*,T>
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.equal(**kwargs)[source]
Return the truth value of
x == y
element-wise with broadcasting (1
for true,0
for false in numeric domain).- Parameters:
- x: <*,T> (Required)
Shape must be compatible with
y
in broadcast.
- y: <*,T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- <*, bool>
A boolean tensor with the same shape as the inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.floor_div(**kwargs)[source]
Return
x / y
element-wise with broadcasting, rounded towards negative infinity.- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*, T>
A tensor of the same type and shape as the inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.greater(**kwargs)[source]
Return the truth value of
x > y
element-wise with broadcasting (1
for true,0
for false in numeric domain).- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*, bool>
A boolean tensor with the same shape as the inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.greater_equal(**kwargs)[source]
Return the truth value of
x >= y
element-wise with broadcasting (1
for true,0
for false in numeric domain).- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, bool>
A boolean tensor with the same shape as the inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.less(**kwargs)[source]
Return the truth value of
x < y
element-wise with broadcasting (1
for true,0
for false in numeric domain).- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, bool>
A boolean tensor with the same shape as the inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.less_equal(**kwargs)[source]
Return the truth value of
x <= y
element-wise with broadcasting (1
for true,0
for false in numeric domain).- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, bool>
A boolean tensor with the same shape as the inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.logical_and(**kwargs)[source]
Return the truth value of
x AND y
element-wise with broadcasting- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: bool
- Returns:
- tensor<*?, bool>
A boolean tensor with the same shape as the inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.logical_or(**kwargs)[source]
Return the truth value of
x OR y
element-wise with broadcasting- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: bool
- Returns:
- tensor<*?, bool>
A boolean tensor with the same shape as the inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.logical_xor(**kwargs)[source]
Return the truth value of
x XOR y
element-wise with broadcasting- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: bool
- Returns:
- tensor<*?, bool>
A boolean tensor with the same shape as the inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.maximum(**kwargs)[source]
Return
x > y ? x : y
element-wise with broadcasting.- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, T>
A tensor with the broadcasted shape from inputs, and type is derived from inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.minimum(**kwargs)[source]
Return
x > y ? y : x
element-wise with broadcasting.- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, T>
A tensor with the broadcasted shape from inputs, and type is derived from inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.mod(**kwargs)[source]
Return
x % y
element-wise with broadcasting.- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, T>
A tensor with the broadcasted shape from inputs, and type is derived from inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.mul(**kwargs)[source]
Return
x * y
element-wise with broadcasting.- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, T>
A tensor with the broadcasted shape from inputs, and type is derived from inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.not_equal(**kwargs)[source]
Return the truth value of
x != y
element-wise with broadcasting (1
for true,0
for false in numeric domain).- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, bool>
A boolean tensor with the broadcasted shape from inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.real_div(**kwargs)[source]
Return
x / y
element-wise with broadcasting.- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, T>
A tensor with the broadcasted shape from inputs, and type is derived from inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.pow(**kwargs)[source]
Return
x ^ y
element-wise with broadcasting.- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, T>
A tensor with the broadcasted shape from inputs, and type is derived from inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_binary.sub(**kwargs)[source]
Return
x - y
element-wise with broadcasting.- Parameters:
- x: tensor<*, T> (Required)
Shape must be compatible with
y
in broadcast.
- y: tensor<*, T> (Required)
Shape must be compatible with
x
in broadcast.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, T>
A tensor with the broadcasted shape from inputs, and type is derived from inputs.
elementwise_unary (iOS 15+)
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.abs(**kwargs)[source]
Return the absolute values of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.acos(**kwargs)[source]
Return the inverse cosine values of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.asin(**kwargs)[source]
Return the inverse sine of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.atan(**kwargs)[source]
Return the inverse tangent of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.atanh(**kwargs)[source]
Return the inverse hyperbolic tangent values of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.cast(**kwargs)[source]
Cast the input
x
to the new typedtype
.- Parameters:
- x: tensor<[*d], T> (Required)
- dtype: const str (Required)
Can be one of the following types:
int32
,fp16
,fp32
,bool
.
- Attributes:
- T: i32, fp16, fp32, bool.
- Returns:
- tensor<[*d], dtype>
A tensor of the same shape as
x
, with typedtype
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.ceil(**kwargs)[source]
Return the ceil values of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.clip(**kwargs)[source]
Clip the values in the input
x
to[alpha, beta]
, element-wise. Any values less thanalpha
are set toalpha
, and any values greater thanbeta
are set tobeta
.- Parameters:
- x: tensor<[*d], T> (Required)
- alpha: const T (Required)
- beta: const T (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.cos(**kwargs)[source]
Return cosine of
x
element-wise. Input domain is(-inf, inf)
and output range is[-1,1]
.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.cosh(**kwargs)[source]
Return hyperbolic cosine of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.erf(**kwargs)[source]
Return the gauss error function of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.exp(**kwargs)[source]
Return e^x, element-wise.
- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.exp2(**kwargs)[source]
Return 2^x, element-wise.
- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.floor(**kwargs)[source]
Return the floor of the input
x
, element-wise, the same as rounding towards negative infinity.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.inverse(**kwargs)[source]
Return the reciprocal value of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- epsilon: const T (Optional, default=1e-4)
This is a small constant that is added to the input, before taking its inverse, for stability.
y = 1 / (x + epsilon)
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.log(**kwargs)[source]
Return the natural logarithm value of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- epsilon: const T (Optional, default=1e-45)
This is a small constant that is added to the input, before taking log.
y = log(x + epsilon)
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.logical_not(**kwargs)[source]
Return the value of NOT the input
x
, element-wise. (1
for true,0
for false in numeric domain.) A numeric valuet
is evaluated to trueiff t != 0
.- Parameters:
- x: tensor<[*d], bool> (Required)
- Attributes:
- T: bool
- Returns:
- tensor<[*d], bool>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.round(**kwargs)[source]
Return the round value of the input
x
to nearest integer, element-wise.0.5
is rounded to0
.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.rsqrt(**kwargs)[source]
Return the reciprocal value of the square root of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- epsilon: const T (Optional, default=1e-12)
This is a small constant that is added to the input, before applying the
rsqrt
function, for stability.y = 1 / sqrt(x + epsilon)
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.sign(**kwargs)[source]
Return the sign value of the input
x
, element-wise.All elements in the output will be either
-1
or1
, or zero if the inputx
is zero.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.sin(**kwargs)[source]
Return the sine value of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.sinh(**kwargs)[source]
Return the hyperbolic sine value of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.sqrt(**kwargs)[source]
Returns the square root value of the input
x
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.square(**kwargs)[source]
Return
x^2
, element-wise.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.tan(**kwargs)[source]
Return the tangent value of the input
x
, element-wise. Both input and output ranges are(-inf, inf)
.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.tanh(**kwargs)[source]
Return the hyperbolic tangent value of the input
x
, element-wise. Both input and output ranges are(-inf, inf)
while output range is[-1, 1]
.- Parameters:
- x: tensor<[*d], T> (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.elementwise_unary.threshold(**kwargs)[source]
Set a lower bound
alpha
to the values in the inputx
, element-wise. Any values less thanalpha
are set toalpha
.- Parameters:
- x: tensor<[*d], T> (Required)
- alpha: const T (Required)
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
elementwise_unary (iOS 17+)
- class coremltools.converters.mil.mil.ops.defs.iOS17.elementwise_unary.cast(**kwargs)[source]
Cast the input
x
to the new typedtype
. The only difference between this version and the iOS 15cast
is that it supports int8, uint8, int16, and uint16.- Parameters:
- x: tensor<[*d], T> (Required)
- dtype: const str (Required)
Can be one of the following types:
int8
,uint8
,int16
,uint16
,int32
,fp16
,fp32
, orbool
.
- Attributes:
- T: i8, ui8, i16, ui16, i32, fp16, fp32, bool.
- Returns:
- tensor<[*d], dtype>
A tensor of the same shape as
x
, with typedtype
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.elementwise_unary.clip(**kwargs)[source]
Clip the values in the input
x
to[alpha, beta]
, element-wise. Any values less thanalpha
are set toalpha
, and any values greater thanbeta
are set tobeta
.The major difference between this version and the iOS 15
clip
is that it uses strict validation to ensure thatalpha < beta
.- Parameters:
- x: tensor<[*d], T> (Required)
- alpha: const T (Required)
- beta: const T (Required)
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.elementwise_unary.inverse(**kwargs)[source]
Return the reciprocal value of the input
x
, element-wise. The only difference between this version and the iOS 15inverse
isepsilon
may have different dtypes than the inputs/outputs.- Parameters:
- x: tensor<[*d], T> (Required)
- epsilon: const U (Optional, default=1e-4)
This is a small constant that is added to the input, before taking its inverse, for stability.
y = 1 / (x + epsilon)
.
- Attributes:
- T: fp16, fp32
- U: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.elementwise_unary.log(**kwargs)[source]
Return the natural logarithm value of the input
x
, element-wise. The only difference between this version and the iOS 15log
isepsilon
may have different dtypes than the inputs/outputs.- Parameters:
- x: tensor<[*d], T> (Required)
- epsilon: const U (Optional, default=1e-45)
This is a small constant that is added to the input, before taking log.
y = log(x + epsilon)
.
- Attributes:
- T: fp16, fp32
- U: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.elementwise_unary.rsqrt(**kwargs)[source]
Return the reciprocal value of the square root of the input
x
, element-wise. The only difference between this version and the iOS 15rsqrt
isepsilon
may have different dtypes than the inputs/outputs.- Parameters:
- x: tensor<[*d], T> (Required)
- epsilon: const U (Optional, default=1e-12)
This is a small constant that is added to the input, before applying the
rsqrt
function, for stability.y = 1 / sqrt(x + epsilon)
.
- Attributes:
- T: fp16, fp32
- U: fp16, fp32
- Returns:
- tensor<[*d], T>
A tensor of the same shape as
x
.
image_resizing (iOS 15+)
- class coremltools.converters.mil.mil.ops.defs.iOS15.image_resizing.affine(**kwargs)[source]
Apply a linear affine transform to the input 2D image tensor. The value at the
(x, y)
(i.e.,(w, h)
) coordinate of the output is computed by first computing the coordinatesx’
andy’
with the following equation, and then computing the value at the coordinate(x’,y’)
in the input image using either bilinear or nearest neighbor interpolation. If the(x’, y’)
point falls outside the input image, then padding information is used to compute the value:x’ = a0 * x + a1 * y + a2 y’ = b0 * x + b1 * y + b2
- Parameters:
- x: tensor<[B, C, H1, W1], T>
Must be rank
4
.
- transform_matrix: tensor<[D, 6], T>
Must be rank
2
.D
can be eitherB
or 1.If
D == B
, there is a separate transform matrix for each batch.If
D == 1
, the same matrix is used for all input batches.For each batch:
[a0, a1, a2, b0, b1, b2]
.
- output_height: const<i32>
Target output height
- output_width: const<i32>
Target output width
- sampling_mode: const<str>
Allowed values:
"bilinear"
- padding_mode: const<str>
Allowed values:
"constant"
.Note that the following example is 1D case for brevity. The op supports only 2D image input.
- If
padding_mode == "constant"
: The input image is assumed to be padded with the padding_value.
For example,
|1, 2, 3| -> |0, 0, 0, 1, 2, 3, 0, 0, 0|
.
- If
- padding_value: const<T>
Currently non-zero values are not supported.
To be used only when
padding_mode == "constant"
, ignored in other cases.
- coordinates_mode: const<str>
Allowed values:
"normalized_minus_one_to_one"
.If
coordinates_mode == "normalized_minus_one_to_one"
, in-image values are[-1, 1]
.- For example, if
coordinates_mode == "normalized_minus_one_to_one"
, the in-range values are[-1, 1]
. That is: (-1, -1)
, i.e.(w=-1, h=-1)
, corresponds to the top-left pixel.(1, -1)
, i.e.(w=1, h=-1)
, corresponds to the top-right pixel.(-1, 1)
, i.e.(w=-1, h=1)
, corresponds to the bottom-left pixel.(1, 1)
, i.e.(w=1, h=1)
, corresponds to the bottom-right pixel.
- For example, if
- align_corners: const<bool>
Currently
align_corners=False
is not supported.To be used only when
coordinates_mode != unnormalized
, ignored otherwise.If
align_corners == True
, the extrema coordinates correspond to the center of the first and last corner pixels.If
align_corners == False
, the extrema coordinates correspond to the edge of the first and last corner pixels.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[B, C, output_height, output_width], T>
- class coremltools.converters.mil.mil.ops.defs.iOS15.image_resizing.crop(**kwargs)[source]
Crop the spatial dimensions (last two dimensions) of the input by the specified amounts.
- Parameters:
- x: tensor<[*D, H1, W1],T> (Required)
Must be at least rank
3
.
- crop_height: const<2, i32> (Required)
Amount to be cropped from the top and bottom of the height dimension (
axis=-2
).
- crop_width: const<2, i32> (Required)
Amount to be cropped from the left and right sides of the width dimension (
axis=-1
).
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*D, H2, W2],T>
Tensor with same type as the input.
H2
=H1 - crop_height[0] - crop_height[1]
.W2
=W1 - crop_width[0] - crop_width[1]
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.image_resizing.crop_resize(**kwargs)[source]
Resize the spatial dimensions (last two dimensions) of the first input according to the bounding boxes specified in the second input, using bilinear interpolation.
- Parameters:
- x: tensor<[B, C, H, W],T> (Required)
The input, from which patches (regions of interest) are extracted and resized using bilinear interpolation.
Rank
4
.
- roi: tensor<[N,1,4,1,1], T> or tensor<[N,1,5,1,1], T> (Required)
Regions of interest, or coordinates of the boxes. The above input represents coordinates of
N
boxes.The convention to express coordinates depends on the value of the input
box_coordinate_mode
.Rank
5
.If
tensor<[N,1,4,1,1], T>
: Resized images are computed for allB
input images.If
tensor<[N,1,5,1,1], T>
: The first element fromaxis=-3
to be resized is an index. It must be within range[0, B)
.
- target_height: const<i32> (Optional, Default=1)
Target height for resizing each patch.
- target_width: const<i32> (Optional, Default=1)
Target width for resizing each patch.
- normalized_coordinatesconst<bool> (Optional, default=False)
If
True
, the bounding box coordinates must be in the interval[0, 1]
. Scaling is based on the input spatial dimensions:(H_in - 1)
for height and(W_in - 1)
for width.If
False
, the bounding box coordinates must be in the interval[0, H_in - 1]
for height dimensions and[0, W_in - 1]
for width dimensions.
- spatial_scaleconst<fp32> (Optional, default=1.0)
Additional spatial scale that multiplies the bounding box coordinates. You would use this to implement the RoI Align layer, which typically uses unnormalized RoI coordinates along with a spatial scale that is less than or equal to 1.
- box_coordinate_mode: const<str> (Optional, default=”CORNERS_HEIGHT_FIRST”)
Specifies the convention for specifying the four bounding box coordinates for an image of size
(Height, Width)
. The(0,0)
coordinate corresponds to the top-left corner of the image.This parameter can take one of four values:
"CORNERS_HEIGHT_FIRST"
:[h_start, w_start, h_end, w_end]
"CORNERS_WIDTH_FIRST"
:[w_start, h_start, w_end, h_end]
"CENTER_SIZE_HEIGHT_FIRST"
:[h_center, w_center, box_height, box_width]
"CENTER_SIZE_WIDTH_FIRST"
:[w_center, h_center, box_width, box_height]
- sampling_modeconst<str> (Optional, default=”DEFAULT”)
This parameter can take
"STRICT_ALIGN_CORNERS"
,"ALIGN_CORNERS"
,"DEFAULT"
,"OFFSET_CORNERS"
orUNALIGN_CORNERS
as values.This same convention is used by the
resize_bilinear
op (see that op for details).
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[N, B, C, target_height, target_width],T> or tensor<[N, 1, C, target_height, target_width],T>
Tensor with same type as the input.
If
roi : tensor<[N,1,4,1,1], T>
, the output istensor<[N, B, C, target_height, target_width],T>
. Total crops =N*B
; that is,N
crops for each input in the batch.If
roi : tensor<[N,1,5,1,1], T>
, the output istensor<[N, 1, C, target_height, target_width],T>
. Total crops =N
; that is, 1 crop for given input image index in the batch.
See also
- class coremltools.converters.mil.mil.ops.defs.iOS15.image_resizing.resample(**kwargs)[source]
Resample the input image tensor
x
at thecoordinates
. Resampling is required if the coordinates do not correspond to exact pixels in the input image. Thesampling_mode
determines the algorithm used for resampling and computing the values.- Parameters:
- x: tensor<[B, C, H1, W1], T>
Must be rank
4
.
- coordinates: tensor<[B, H2, W2, 2], U>
Must be rank
4
.Coordinates are provided in the order
(x, y)
(i.e.(w, h)
).The value of each output location
output[b, c, h, w]
is calculated by sampling from the input imagex[b, c, :, :]
.The pixel at the
(x, y)
location corresponds to the length-2 vector:coordinates[b, h, w, :]
.Coordinate (normalized or unnormalized) should be specified according to
coordinates_mode
.
- sampling_mode: const<str>
Allowed values:
"bilinear"
,"nearest"
- padding_mode: const<str>
Allowed values:
"constant"
,"border"
,"reflection"
,"symmetric"
Note that the following example is 1D case for brevity. The op supports only 2D image input.
- If
padding_mode == "constant"
: The input image is assumed to be padded with the
padding_value
.For example:
|1, 2, 3| -> |0, 0, 0, 1, 2, 3, 0, 0, 0|
- If
- if
padding_mode == "border"
: The input image is assumed to be padded with the values replicated from the values at the edge. This is also referred to as the “clamped” or “replication” mode, since the padded values are clamped to the border values.
For example:
|1, 2, 3| -> |1, 1, 1, 1, 2, 3, 3, 3, 3|
- if
- If
padding_mode == "reflection"
: The border values are reflected, not including the values at the edge/border.
For example:
|1, 2, 3| -> |2, 3, 2, 1, 2, 3, 2, 1, 2|
- If
- If
padding_mode == "symmetric"
: Values are reflected, including the border/edge values.
For example:
|1, 2, 3| -> |3, 2, 1 , 1, 2, 3, 3, 2, 1|
- If
- padding_value: const<T>
To be used only when
padding_mode == "constant"
, ignored in other cases.
- coordinates_mode: const<str>
Allowed values:
"unnormalized"
,"normalized_minus_one_to_one"
,"normalized_zero_to_one"
If
coordinates_mode == "unnormalized"
, the coordinates input values are interpreted to be in range[0, W - 1] / [0, H - 1]
, which corresponds to the in-image point.If
coordinates_mode == "normalized_minus_one_to_one"
, the in-image values are[-1, 1]
.If
coordinates_mode == "normalized_zero_to_one"
, in-image values are[0, 1]
.- For example, if
coordinates_mode == "normalized_minus_one_to_one"
, the in range values are [-1, 1]. That is: (-1, -1)
, i.e.(w=-1, h=-1)
, corresponds to the top-left pixel.(1, -1)
, i.e.(w=1, h=-1)
, corresponds to the top-right pixel.(-1, 1)
, i.e.(w=-1, h=1)
, corresponds to the bottom-left pixel.(1, 1)
, i.e.(w=1, h=1)
, corresponds to the bottom-right pixel.
- For example, if
- align_corners: const<bool>
If
align_corners == True
, the extrema coordinates correspond to the center of the first and last corner pixels.If
align_corners == False
, the extrema coordinates correspond to the edge of the first and last corner pixels.
- Attributes:
- T: fp16, fp32
- U: fp32, int32
- Returns:
- tensor<[B, C, H2, W2], T>
- class coremltools.converters.mil.mil.ops.defs.iOS15.image_resizing.resize_bilinear(**kwargs)[source]
Resize the spatial (last two) dimensions to the specified target size using bilinear interpolation. Although this op is similar to
upsample_bilinear
,resize_bilinear
works with a target size rather than with scale factors.- Parameters:
- x: tensor<[*D, H1, W1],T> (Required)
Must be at least rank
3
.
- target_size_height: const<int32> (Optional, default=1)
Target spatial size for the height dimension (
axis=-2
).
- target_size_width: const<int32> (Optional, default=1)
Target spatial size for the width dimension (
axis=-1
).
- sampling_mode: const<str> (Optional, default=”DEFAULT”)
This parameter can take
"STRICT_ALIGN_CORNERS”
,"ALIGN_CORNERS"
,"DEFAULT"
,"OFFSET_CORNERS"
orUNALIGN_CORNERS
as values. For details, see the Notes section.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*D, H2, W2],T>
Tensor with same type as the input.
H2
=target_size_height
.W2
=target_size_width
.
Notes
To understand the
sampling_mode
parameter, consider the 1-D case. You need to sample a grid of pixels whose values are computed using linear interpolation. This parameter controls how the grid is sampled. If the input grid is[0, Xin-1]
(corresponding to an input size ofXin
), and if the output size isXout
, then the grid points are sampled in the following manner:# "STRICT_ALIGN_CORNERS": spacing = (Xin - 1) / (Xout - 1) grid_point[i] = min(Xin-1, max(0, i*spacing)), for i=0,1,...,Xout-1 # "ALIGN_CORNERS": Same as "STRICT_ALIGN_CORNERS" unless Xout=1, # in which case: grid_point[0] = (Xin-1) / 2, if Xout==1 # "DEFAULT": spacing = (Xin - Xin/Xout) / (Xout - 1) grid_point[i] = min(Xin-1, max(0, i*spacing)), for i=0,1,...,Xout-1 # "OFFSET_CORNERS": delta = max(1, Xin - 1) / Xout spacing = ((Xout - 1) * delta) / (Xout - 1) grid_point[i] = min(Xin-1, max(0, 0.5*delta + i*spacing)), for ... i=0,1,...,Xout-1 # "UNALIGN_CORNERS": spacing = Xin / Xout grid_point[i] = min(Xin - 1, max(0, i*spacing + 0.5*spacing - 0.5)), for i=0,1,...,Xout-1
For example:
Xin = 2 input_interval = [0,1]
Grid points:
[0., 0.1, 0.5, 0.9, 1.] (Xout = 5, UNALIGN_CORNERS) [0., 0.25, 0.5, 0.75, 1.] (Xout = 5, "STRICT_ALIGN_CORNERS" / "ALIGN_CORNERS") [0., 0.4, 0.8, 1., 1.] (Xout = 5, "DEFAULT") [0.1, 0.3, 0.5, 0.7, 0.9] (Xout = 5, "OFFSET_CORNERS") [0., 0., 0.33, 0.67, 1., 1.] (Xout = 6, UNALIGN_CORNERS) [0., 0.2, 0.4, 0.6, 0.8, 1.] (Xout = 6, "STRICT_ALIGN_CORNERS" / "ALIGN_CORNERS") [0., 0.33, 0.67, 1., 1., 1.] (Xout = 6, "DEFAULT") [0.08, 0.25, 0.42, 0.58, 0.75, 0.92] (Xout = 6, "OFFSET_CORNERS")
Note the following similarities:
"DEFAULT"
is same astf.raw_ops.ResizeBilinear(align_corners=False, half_pixel_centers=False)
."STRICT_ALIGN_CORNERS"
is same astf.raw_ops.ResizeBilinear(align_corners=True, half_pixel_centers=False)
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.image_resizing.resize_nearest_neighbor(**kwargs)[source]
Resize the spatial (last two) dimensions to the specified target size using nearest neighbor interpolation. Although this op is similar to
upsample_nearest_neighbor
,resize_nearest_neighbor
works with a target size rather than with scale factors.- Parameters:
- x: tensor<[*D, H1, W1], T> (Required)
Must be at least rank
3
.
- target_size_height: const<int32> (Required)
Target spatial size for the height dimension (
axis=-2
).
- target_size_width: const<int32> (Required)
Target spatial size for the width dimension (
axis=-1
).
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*D, H2, W2], T>
Tensor with same type as the input.
H2
=target_size_height
.W2
=target_size_width
.
See also
Notes
See
resize_bilinear
for examples.
- class coremltools.converters.mil.mil.ops.defs.iOS15.image_resizing.upsample_bilinear(**kwargs)[source]
Upsample the spatial dimensions (last two dimensions) of the input by scale factors using bilinear interpolation. The upsample_bilinear operation in MIL corresponds to the
recompute_scale_factor=True
mode in the pyorch bilinear interpolation op. That is, the scale factor is recomputed by the output size. Note that when thescale_factor_height
andscale_factor_width
are floating point, this could result in a different scale factor due to rounding.- Parameters:
- x: tensor<[*D, H1, W1], T> (Required)
Must be at least rank
3
.
- scale_factor_height: const<U> (Optional, default=1)
Scale factor for the height dimension (
axis=-2
).
- scale_factor_width: const<U> (Optional, default=1)
Scale factor for the width dimension (
axis=-1
).
- align_corners: const<bool> (Optional, default=True)
This parameter determines how samples are chosen for bilinear interpolation. For details, see the Notes section.
- Attributes:
- T: fp16, fp32
- Ufp32, i32
- Returns:
- tensor<[*D, H2, W2], T>
Tensor with same type as the input.
H2
= floor(H1
*scale_factor_height
).W2
= floor(W1
*scale_factor_width
).
Notes
To understand the
align_corners
parameter, consider the 1-D case. You need to sample a grid of pixels whose values are computed using linear interpolation. This parameter controls how the grid is sampled. If the input grid is[0, Xin-1]
(corresponding to an input size ofXin
), and if the output size isXout
, then the grid points are sampled in the following manner:# If align_corners == True: spacing = (Xin - 1) / (Xout - 1) grid_point[i] = min(Xin - 1, max(0, i*spacing)), for i=0,1,...,Xout-1 # If align_corners == False: spacing = Xin / Xout grid_point[i] = min(Xin - 1, max(0, i*spacing + 0.5*spacing - 0.5)), ... for i=0,1,...,Xout-1
For example:
Xin = 2 input_interval = [0,1]
Grid points:
[0., 0.1, 0.5, 0.9, 1.] (Xout = 5, align_corners=False) [0., 0.25, 0.5, 0.75, 1.] (Xout = 5, align_corners=True) [0., 0., 0.33, 0.67, 1., 1.] (Xout = 6, align_corners=False) [0., 0.2, 0.4, 0.6, 0.8, 1.] (Xout = 6, align_corners=True)
Note the following similarities:
align_corners=False
is the same astf.raw_ops.ResizeBilinear(align_corners=False, half_pixel_centers=True)
.align_corners=True
is the same astf.raw_ops.ResizeBilinear(align_corners=True, half_pixel_centers=False)
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.image_resizing.upsample_nearest_neighbor(**kwargs)[source]
Upsample the spatial dimensions (last two dimensions) of the input by integer scale factors using nearest-neighbor interpolation.
- Parameters:
- x: tensor<[*D, H1, W1],T> (Required)
Must be at least rank
3
.
- scale_factor_height: const<i32> or const<fp32> (Optional, default=1)
Scale factor for the height dimension (
axis=-2
).Can be either an integer or fractional.
- scale_factor_width: const<i32> or const<fp32> (Optional, default=1)
Scale factor for the width dimension (
axis=-1
).Can be either an integer or fractional.
- Attributes:
- T: fp16, fp32
- U: fp32, i32
- Returns:
- tensor<[*D, H2, W2],T>
Tensor with same type as the input.
H2
= floor(H1
*scale_factor_height
).W2
= floor(W1
*scale_factor_width
).
image_resizing (iOS 16+)
- class coremltools.converters.mil.mil.ops.defs.iOS16.image_resizing.crop_resize(**kwargs)[source]
This version differs from the iOS 15
crop_resize
by supportingpad_value
as an additional parameter.- Parameters:
- pad_valueconst<T> (Optional, default=0.0)
If the box indexes go beyond the input boundary, the input image is padded with
pad_value
.Defaults to
0
.It is the same as
extrapolation_value
in tf.image.crop_and_resize.
- Attributes:
- T: fp16, fp32
- class coremltools.converters.mil.mil.ops.defs.iOS16.image_resizing.resample(**kwargs)[source]
This version of
resample
supports float 16 coordinates.For complete documentation, see the iOS 15
resample
.
- class coremltools.converters.mil.mil.ops.defs.iOS16.image_resizing.upsample_bilinear(**kwargs)[source]
This version of
upsample_bilinear
supportshalf_pixel_centers
. For complete documentation, see the iOS 15upsample_bilinear
.- Parameters:
- half_pixel_centers: const<bool> (Optional)
Defaults to
!align_corners
if not provided.
image_resizing (iOS 17+)
- class coremltools.converters.mil.mil.ops.defs.iOS17.image_resizing.crop_resize(**kwargs)[source]
The major differences between this version and the iOS 16
crop_resize
are as follows:The input
ROI
is replaced byboxes
andbox_indices
.The dtype domain of input
x
,boxes
, andbox_indices
are independent.The output no longer has the
B
dim. The output is[N, C, target_height, target_width]
rather than the[N, B, C, target_height, target_width]
in iOS 16.
- Parameters:
- x: tensor<[B, C, H, W], T> (Required)
The input, from which patches (regions of interest) are extracted and resized using bilinear interpolation.
Rank
4
.
- boxes: tensor<[N, 4], BOX_T> (Required)
Coordinates of
N
boxes.The convention to express coordinates depends on the value of
box_coordinate_mode
.If
normalized_coordinates
is True, only fp16 and fp32 dtypes are allowed.
- box_indices: tensor<[N], BOX_INDEX_T> (Optional)
Default is
arange(N)
, or[0, 1, ..., N-1]
.If
box_indices[i]=j
, this means thatboxes[i]
will be applied to thej
-th image. Therefore, it is invalid forbox_indices[i]
to be greater thanB
.
- target_height: const<i32> (Optional, Default=1)
Target height for resizing each patch.
- target_width: const<i32> (Optional, Default=1)
Target width for resizing each patch.
- normalized_coordinatesconst<bool> (Optional, default=False)
If
True
, the bounding box coordinates must be in the interval[0, 1]
. Scaling is based on the input spatial dimensions:(H_in - 1)
for height and(W_in - 1)
for width.If
False
, the bounding box coordinates must be in the interval[0, H_in - 1]
for height dimensions and[0, W_in - 1]
for width dimensions.
- spatial_scaleconst<fp32> (Optional, default=1.0)
Additional spatial scale that multiplies the bounding box coordinates.
You would use this to implement the RoI Align layer, which typically uses unnormalized RoI coordinates along with a spatial scale that is less than or equal to
1
.
- box_coordinate_mode: const<str> (Optional, default=”CORNERS_HEIGHT_FIRST”)
Specifies the convention for specifying the four bounding box coordinates for an image of size
(Height, Width)
. The(0,0)
coordinate corresponds to the top-left corner of the image.This parameter can take one of four values:
"CORNERS_HEIGHT_FIRST"
:[h_start, w_start, h_end, w_end]
"CORNERS_WIDTH_FIRST"
:[w_start, h_start, w_end, h_end]
"CENTER_SIZE_HEIGHT_FIRST"
:[h_center, w_center, box_height, box_width]
"CENTER_SIZE_WIDTH_FIRST"
:[w_center, h_center, box_width, box_height]
- sampling_modeconst<str> (Optional, default=”DEFAULT”)
This parameter can take
"STRICT_ALIGN_CORNERS"
,"ALIGN_CORNERS"
,"DEFAULT"
,"OFFSET_CORNERS"
orUNALIGN_CORNERS
as values.This is the same convention used by the
resize_bilinear
op.
- pad_valueconst<T> (Optional, default=0.0)
If the box indexes go beyond the input boundary, the input image is padded with
pad_value
.Defaults to
0
.It is the same as
extrapolation_value
in tf.image.crop_and_resize.
- Attributes:
- T: fp16, fp32
- BOX_T: fp16, fp32, uint16
- BOX_INDEX_T: uint16, int32
- Returns:
- tensor<[N, C, target_height, target_width], T>
- class coremltools.converters.mil.mil.ops.defs.iOS17.image_resizing.resample(**kwargs)[source]
Resample the input image tensor
x
at thecoordinates
.The major difference between this version and the iOS 16
resample
is that coordinates supports int8, uint8, int16, uint16.
- class coremltools.converters.mil.mil.ops.defs.iOS17.image_resizing.resize(**kwargs)[source]
Resizes the input tensor
x
by choosing the right-mostresized_dims
dimensions from the input shapeshape
, and by choosing the rest fromx
‘s shape.This iOS17
resize
is a superset of iOS 15resize_bilinear
andresize_nearest_neighbor
. The main benefit is that this resize op allows a use-case in dynamic tensor shapes where a tensor needs to be resized to a dynamic shape as specified by another tensor.To illustrate how output shape is inferred, the following are two examples:
Example #1:
x.shape: [1, 2, 3, 4] shape: [1, 6, 8] resized_dims: 2 The output's shape will be [1, 2, 6, 8]
Example #2:
x.shape: [1, 2, 3, is0] shape: [1, 0, 0] resized_dims: 2 The output's shape will be [1, 2, 3, is0]
- Parameters:
- x: tensor<[…], T> (Required)
- shape: tensor<[K], U> (Required)
Restriction:
size(shape)
<=rank(x)
.If
shape[i]==0
, the dimension in the output tensor will instead be inferred from the corresponding element ofx.shape()
. Note this might not bex.shape()[i]
, assize(shape)
,resized_dims
, andsize(x)
may all be different sizes.
- resized_dims: const tensor<[], uint32> (Required)
Restriction:
resized_dims
<=size(shape)
.
- interpolation_mode: const<str> (Optional, default=”LINEAR”)
Available mode:
LINEAR
,NEAREST_NEIGHBOR
.
- sampling_mode: const<str> (Optional, default=”DEFAULT”)
Available mode:
DEFAULT
,STRICT_ALIGN_CORNERS
,ALIGN_CORNERS
,OFFSET_CORNERS
,UNALIGN_CORNERS
.For details about different sampling modes, see iOS 15
resize_bilinear
.
- Attributes:
- T: fp16, fp32, int32
- U: int32, int16, uint16, uint32
- Returns:
- tensor<[…], T>
linear (iOS 15+)
- class coremltools.converters.mil.mil.ops.defs.iOS15.linear.einsum(**kwargs)[source]
Perform tensor multiplication expressed according to the einsum notation. The mode/equation that is currently supported is multiplying matrices that are laid out on dimensions -1 and -3, treating all the other dimensions as batch. Broadcasting is supported along batch dimensions. In particular, the inputs must be of the following shapes:
- Rank 4 input case:
Input 1:
[B, C, H, W1]
.Input 2:
[B, W1, H, W2]
.Output:
[B, C, H, W2]
.If, for one of the inputs, the dimensions
"B"
or"H"
is 1, they are broadcast to match the other input.
- Rank 3 input case:
Input 1:
[C, H, W1]
.Input 2:
[W1, H, W2]
.Output:
[C, H, W2]
.If, for one of the inputs, the dimension
"H"
is 1, it is broadcast to match the other input.
- Parameters:
- valuesTuple(tensor_1, tensor_2)
- Where:
tensor_1
:tensor<[*D, C, H, W1], T>
.Must be of rank 3 or 4.
tensor_2
:tensor<[*D, W1, H, W2], T>
.Must be of rank 3 or 4.
- equation: const<str>
- Supported equations are:
"nchw,nwhu->nchu"
and its equivalent equation strings."chw,whr->chr"
and its equivalent equation strings.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*D, C, H, W2], T>
Same ranks as the inputs.
- class coremltools.converters.mil.mil.ops.defs.iOS15.linear.linear(**kwargs)[source]
Perform
x * weight.T + bias
whereweight
andbias
are constant at compile time.- Parameters:
- x: tensor<[*D,D_in], T> (Required)
1 <= rank <= 3
.0 <= rank(*D) <= 2
.
- weight: const tensor<[D_out,D_in], T> (Required)
- bias: const tensor<[D_out],T> (Optional)
Default to
0
.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<[*D,D_out], T>
Same rank as the input
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.linear.matmul(**kwargs)[source]
Perform N-D batch matrix multiplication with NumPy-style broadcasting based on the following rules:
Rule 1. If both
x, y
are 1-D, return the scalar from the dot product.Rule 2. If both
x, y
are 2-D or higher, perform a broadcast on the batch dimensions (all dimensions except the last2
).For example:
x.shape == (10, 4, 3)
y.shape == (5, 10, 3, 2)
matmul(x, y).shape == (5, 10, 4, 2)
Conventional matrix multiplication is a special case where both
x, y
are exactly 2-D. For example:x.shape == (4, 3)
y.shape == (3, 2)
matmul(x, y).shape == (4, 2)
If
x
is 1-D, andy
is N-D whereN >= 2
,x
is first promoted to matrixxm
by prepending a1
to its dimension, and the resultingxm
is broadcast toy
following Rule 2 above. After this, remove the inserted dimension. For example:x.shape == (4)
y.shape == (10, 4, 3)
xm.shape == (1, 4)
matmul(xm, y).shape == (10, 1, 3)
Removing the inserted dimension results in
matmul(x, y).shape == (10, 3)
.Note:
xm
andmatmul(xm, y)
are for illustration only.
If
x
is N-D whereN >= 2
, andy
is 1-D,y
is first promoted to matrixym
by appending a1
to its dimension, and the resultingym
is broadcast tox
following Rule 2 above. After this, remove the inserted dimension. For example:x.shape == (10, 3, 4)
y.shape == (4,)
ym.shape == (4, 1)
matmul(x, ym).shape == (10, 3, 1)
Removing the inserted dimension results in
matmul(x, y).shape == (10, 3)
.Note:
xm
andmatmul(xm, y)
are for illustration only.
- Parameters:
- x: tensor<[*,K1], T> (Required)
x
must be 1-D or higher.
- y: tensor<[*,K2], T> (Required)
y
must be 1-D or higher.
- transpose_x: const bool (Optional)
Default to
False
.Use
True
to transpose the last two dimensions ofx
before multiplication. It has no effect whenx
is 1-D.
- transpose_y: const bool (Optional)
Default to
False
.Use
True
to transpose the last two dimensions ofy
before multiplication. It has no effect wheny
is 1-D.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*, T>
Scalar or tensor output.
linear (iOS 17+)
- class coremltools.converters.mil.mil.ops.defs.iOS17.linear.linear(**kwargs)[source]
A version of
linear
for iOS 17+. The only difference between this version and the iOS 15linear
is that theweight
andbias
may have a different dtype than the input/output.- Parameters:
- x: tensor<[*D, D_in], T> (Required)
1 <= rank <= 3
.0 <= rank(*D) <= 2
.
- weight: const tensor<[D_out, D_in], U> (Required)
- bias: const tensor<[D_out], U> (Optional)
Default to
0
.
- Attributes:
- T: fp16, fp32, i32
- U: fp16, fp32, i32
- Returns:
- tensor<[*D, D_out], T>
Same rank as the input
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.linear.matmul(**kwargs)[source]
A version of
matmul
for iOS 17+. The only difference between this version and the iOS 15matmul
is that thex
andy
can have a different dtypes when one of them is const.- Parameters:
- x: tensor<[*, K1], T> (Required)
x
must be 1-D or higher.
- y: tensor<[*, K2], U> (Required)
y
must be 1-D or higher.
- transpose_x: const bool (Optional)
Default to
False
.Use
True
to transpose the last two dimensions ofx
before multiplication. It has no effect whenx
is 1-D.
- transpose_y: const bool (Optional)
Default to
False
.Use
True
to transpose the last two dimensions ofy
before multiplication. It has no effect wheny
is 1-D.
- Attributes:
- T: fp16, fp32, i32
- U: fp16, fp32, i32
- Returns:
- tensor<*, V>
Scalar or tensor output.
When
x
andy
are both const or both non-const, it should follow ios15 behavior thatx
,y
, andoutput
all have the same dtype. When one of x and y is const, the output dtype should be the same as the non-const one.
normalization (iOS 15+)
- class coremltools.converters.mil.mil.ops.defs.iOS15.normalization.batch_norm(**kwargs)[source]
Normalize input tensor
x
bymean
andvariance
, and optionally apply a scalegamma
and an offsetbeta
:\[y_i = \gamma_i \dfrac{ (x_i - mean_i)}{\sqrt{variance_i + epsilon}} + beta_i \;,\;i=1,....,C\]The
mean
,variance
,gamma
, andbeta
must be 1-D tensors whose lengths are equal to the second axis (the “depth” or “channel” dimension) ofx
.- Parameters:
- x: tensor<[n,C,*D], T> (Required)
3 <= rank <= 5
.*D
refers to the spatial dimensions,1 <= rank(*D) <= 3
.n
is the batch dimension.
- mean: const tensor<[C], T> (Required)
- variance: const tensor<[C], T> (Required)
- gamma: const tensor<[C], T> (Optional)
Optional scale applied to normalized tensor.
Default is all ones.
- beta: const tensor<[C], T> (Optional)
Optional offset applied to normalized tensor.
Default is all zeros.
- epsilon: const T (Optional)
Default is
1e-5
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n,C,*D], T>
Output tensor has the same shape and type as the input
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.normalization.instance_norm(**kwargs)[source]
Apply instance normalization to the n-dimensional input tensor.
- Parameters:
- x: tensor<[n,C,*D], T> (Required)
3 <= rank(x) <= 4
.*D
refers to the spatial dimensions,1 <= rank(*D) <= 2
.n
is the batch dimension.
- gamma: const tensor<[C], T> (Optional)
Optional scale applied to normalized tensor.
Default to all ones.
- beta: const tensor<[C], T> (Optional)
Optional offset applied to normalized tensor.
Default to all zeros.
- epsilon: const f32 (Optional)
Default to
1e-5
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n,C,*D], T>
Output tensor has the same shape and type as the input
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.normalization.l2_norm(**kwargs)[source]
Apply L2 normalization to the n-dimensional input tensor. That is, divide the input tensor by the square root of the sum of squares of all elements of the input.
\[x_i \leftarrow \dfrac{x_i}{\sqrt{\sum{x_i^2} + \epsilon}}\]- Parameters:
- x: tensor<[*B, *D], T> (Required)
Input tensor,
rank(x) >= 3
.*B
refers to the leading dimensions.*D
refers to the spatial dimensions to be normalized. Must be rank 3:rank(*D) == 3
.When
rank(x) == 3
, in whichrank(*B) == 0 and rank(*D) == 3
, the input is divided by the square root of the sum of squares of all elements.For ranks greater than 3, in which
rank(*B) >= 1 and rank(*D) == 3
, the leading dimensions *B, starting from0
to-4
(inclusive), are all treated as batch. The L2 normalization are done batch-wise.
- epsilon: const T (Optional)
Small constant to avoid division by
0
.Optional, defaults to
1e-6
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*B, *D], T>
Same type and shape as the input tensor
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.normalization.layer_norm(**kwargs)[source]
Apply layer normalization to the n-dimensional input tensor:
\[out = gamma * (input - E[x]) / sqrt(Var[x] + epsilon) + beta\]- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- axes: const<[K], i32> (Optional)
Dimensions to perform layer normalization.
Default is
None
(all dimensions).
- gamma: const tensor<*?, T>, T> (Optional)
if provided, the shape must be be
x.shape[axes]
. For instance, if inputx
with shape(3,4,5,6)
andaxes = [2,3]
, gamma must have shape(5,6)
.Default is all ones.
- beta: const tensor<*?, T>, T> (Optional)
Same shape as gamma.
Default is all zeros.
- epsilon: const T (Optional)
Small constant to avoid division by
0
.Default is
1e-5
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<*?, T>:
Tensor with same shape and type as the input tensor
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.normalization.local_response_norm(**kwargs)[source]
Apply local response normalization to the n-dimensional input tensor:
\[x_i \leftarrow \dfrac{x_i}{\left ( k + \dfrac{\alpha}{\text{size}} \sum_j x_j^2 \right )^\beta}\]- Parameters:
- x: tensor<[n,C,*D], T> (Required)
Input tensor,
3 <= rank(x) <= 4
.*D
refers to the spatial dimensions,1 <= rank(*D) <= 2
.n
is the batch dimension.
- size: const i32 (Required)
Amount of neighboring channels to normalize.
- alpha: const T (Optional)
Scale factor.
Default is
1e-4
.
- beta: const T (Optional)
An exponent.
Default is
0.75
.
- k: const T (Optional)
Additive factor.
Default is
1.0
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n,C,*D], T>
Same type and shape as the input tensor
x
.
normalization (iOS 17+)
- class coremltools.converters.mil.mil.ops.defs.iOS17.normalization.batch_norm(**kwargs)[source]
Normalize input tensor
x
bymean
andvariance
, and optionally apply a scalegamma
and an offsetbeta
:\[y_i = \gamma_i \dfrac{ (x_i - mean_i)}{\sqrt{variance_i + epsilon}} + beta_i \;,\;i=1,....,C\]The difference between this version and the iOS 15
batch_norm
is that input/output can have different dtypes from other parameters.
- class coremltools.converters.mil.mil.ops.defs.iOS17.normalization.instance_norm(**kwargs)[source]
Apply instance normalization to the n-dimensional input tensor.
The difference between this version and the iOS 15
instance_norm
is that input/output can have different dtypes from other parameters.
- class coremltools.converters.mil.mil.ops.defs.iOS17.normalization.l2_norm(**kwargs)[source]
Apply L2 normalization to the n-dimensional input tensor. That is, divide the input tensor by the square root of the sum of squares of all elements of the input.
\[x_i \leftarrow \dfrac{x_i}{\sqrt{\sum{x_i^2} + \epsilon}}\]The difference between this version and the iOS 15
l2_norm
is that input/output andepsilon
can have different dtypes.
- class coremltools.converters.mil.mil.ops.defs.iOS17.normalization.layer_norm(**kwargs)[source]
Apply layer normalization to the n-dimensional input tensor:
\[out = gamma * (input - E[x]) / sqrt(Var[x] + epsilon) + beta\]The difference between this version and the iOS 15
layer_norm
is that input/output can have different dtypes from other parameters.
- class coremltools.converters.mil.mil.ops.defs.iOS17.normalization.local_response_norm(**kwargs)[source]
Apply local response normalization to the n-dimensional input tensor:
\[x_i \leftarrow \dfrac{x_i}{\left ( k + \dfrac{\alpha}{\text{size}} \sum_j x_j^2 \right )^\beta}\]The difference between this version and the iOS 15
local_response_norm
is that input/output can have different dtypes from other parameters.
pool
- class coremltools.converters.mil.mil.ops.defs.iOS15.pool.avg_pool(**kwargs)[source]
Perform average pooling. Supports 1-D, 2-D, and 3-D pool (1, 2, or 3 spatial dimensions).
- Parameters:
- x: tensor<[n,C_in,*D_in], T> (Required)
3 <= rank <= 5
.D_in
are spatial dimensions,1 <= len(D_in) <= 3
.C_in
is the number of input channels or depth dimensions.n
is the batch dimension.
- kernel_sizes: const tensor<[K], T> (Required)
The size of the window for each spatial dimension
D_in
of the input tensor.K == len(D_in)
- strides: const tensor<[S],i32> (Optional, default to all 1s)
Stride along each of the spatial dimensions.
S == len(D_in)
.
- pad_type: const str (Required)
Must be one of
valid
,same
,custom
orsame_lower
.valid
: No padding. This is equivalent to custom pad withpad[i] = 0, for all i
.same
: This is equivalent to custom pad withpad[2*i] + pad[2*i+1] = kernel_size[i]
.custom
: Specify custom padding in the parameter pad. note thatsame
padding is equivalent to custom padding withpad[2*i] + pad[2*i+1] = kernel_size[i]
.same_lower
: Similar tosame
but the padding will place extra rows/cols on the top/left if the padding amount is odd.
- pad: const<[P],i32> (Optional. Default to all 0s)
pad
represents the number of elements to pad before and after each dimension:pad[2*i], pad[2*i+1]
are the pad size before and after spatial dimensioni
.P = 2 * len(D_in)
.pad
should be specified if and only ifpad_type == custom
- exclude_padding_from_average: const tensor<[], bool> (Optional, default to False)
If
True
, padded values (0s) are excluded from the denominator count when computing the average over the kernel window.
- ceil_mode: const<bool>
Same as PyTorch’s
ceil
mode.ceil
is used instead of floor in calculating the output size.Optional, defaults to
False
.Only applicable when
pad_type
isvalid
orcustom
.When
ceil_mode
is True, padding must be symmetric; that is, if specified,pad[2*i] == pad[2*i+1]
must hold.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n, C_out,*D_out], T>
Same rank as
x
.C_out
is the number of output channels or depth dimensions.- When
ceil_mode = False
: D_out[i] = floor[(D_in[i] + pad[2*i] + pad[2*i+1] - kernel_sizes[i]) / strides[i]] +1, for i = 0, .., len(D_in) - 1
is mathematically the same as (when all parameters involved are integers):D_out[i] = ceil [(D_in[i] + pad[2*i] + pad[2*i+1] - kernel_size[i] - 1) / stride[i]], for i = 0, .., len(D_in) - 1
.*D_out
is all ones ifglobal_pooling
istrue
.
- When
- When
ceil_mode = True
: D_out[i] = ceil[(D_in[i] + pad[2*i] + pad[2*i+1] - kernel_sizes[i]) / strides[i]] +1, for i = 0, .., len(D_in) - 1
If
(D_out[i] - 1) * strides[i] >= D_in[i] + pad[2*i] and (pad[2*i] + pad[2*i+1] > 0)
thenD_out[i] = D_out[i] - 1
.
The first equation is same as:
D_out[i] = floor[(D_in[i] + pad[2*i] + pad[2*i+1] - kernel_sizes[i] + strides[i] - 1) / strides[i]] +1, for i = 0, .., len(D_in) - 1
- When
- class coremltools.converters.mil.mil.ops.defs.iOS15.pool.l2_pool(**kwargs)[source]
Perform L2 pooling. Supports 1-D and 2-D pool.
- Parameters:
- x: tensor<[n,C_in,*D_in], T> (Required)
Only support 1d and 2d pooling.
See
avg_pool
.
- kernel_sizes: const tensor<[K], T> (Required)
See
avg_pool
.
- strides: const tensor<[S],i32> (Optional, default to all 1s)
See
avg_pool
.
- pad_type: const str (Required)
See
avg_pool
.
- pad: const<[P],i32> (Optional, default to all 0s)
See
avg_pool
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n, C_out,*D_out], T>
See
avg_pool
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.pool.max_pool(**kwargs)[source]
Perform max pooling. Supports 1-D, 2-D, and 3-D pool.
- Parameters:
- x: tensor<[n,C_in,*D_in], T> (Required)
See
avg_pool
.
- kernel_sizes: const tensor<[K], T> (Required)
See
avg_pool
.
- strides: const tensor<[S],i32> (Optional, default to all 1s)
See
avg_pool
.
- pad_type: const str (Required)
See
avg_pool
.
- pad: const<[P],i32> (Optional, default to all 0s)
See
avg_pool
.
- ceil_mode: const<bool>
see
avg_pool
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n, C_out,*D_out], T>
See
avg_pool
.
quantization
- class coremltools.converters.mil.mil.ops.defs.iOS17.quantization_ops.quantize(**kwargs)[source]
Performs affine/linear quantization on an input tensor.
The original data comes from the first “input”. The other parameters –
scale
,zero_point
, andaxis
– describe how quantization should occur:quantized_data = clip(round(input / scale) + zero_point)
- Parameters:
- input: tensor<SrcT, [1..]> (Required)
- zero_point: const tensor<DstT, [0..1]> (Optional)
The
zero_point
can be either a scalar or a vector. If not provided, it is assumed to be0
.The
zero_point
follows similar broadcasting rules and size constraints asscale
.
- scale: const tensor<SrcT, [0..1]> (Required)
The
scale
can be either a scalar or a vector.- If
scale
is a vector, for implementation, it is broadcasted to the following shape: The rank of
scale
becomes the same as the rank of the input.Constraint:
size(scale-vector) == input.shape[axis]
.For
i == axis
,scale.shape[i] == input.shape[i]
.For
i != axis
,scale.shape == 1
.- For example:
Assume
input.shape = (2, 3, 4, 5)
andaxis = 1
.If
scale
is a vector, thenscale.size
needs to be equal toinput.shape[axis]
; that is, equal to3
.This is broadcasted to
(1, 3, 1, 1)
.
- If
- output_dtype: const tensor<string, []> (Required)
This parameter can take
"uint8"
,"int8"
as values.The
output_dtype
value must match thezero_point
dtype.
- axis: const tensor<int32, []> (Optional)
- Attributes:
- SrcT: fp16, fp32
- DstT: uint8, int8
- Returns:
- tensor<DstT, [1..]>
- class coremltools.converters.mil.mil.ops.defs.iOS17.quantization_ops.dequantize(**kwargs)[source]
Performs dequantization on an input tensor with affine/linear quantization.
The quantized data comes from the first “input”. The other parameters –
scale
,zero_point
, andaxis
– describe how unquantized values can be extracted from it, using the following equation for affine/linear quantization:unquantized_data = scale * (input - zero_point)
- Parameters:
- input: tensor<SrcT, [1..]> (Required)
- zero_point: const tensor<SrcT, [0..1]> (Optional)
The
zero_point
can be either a scalar or a vector. If not provided, it is assumed to be0
.The
zero_point
follows similar broadcasting rules and size constraints asscale
.
- scale: const tensor<DstT, [0..1]> (Required)
The
scale
can be either a scalar or a vector.- If
scale
is a vector, for implementation, it is broadcasted to the following shape: The rank of
scale
becomes the same as the rank of the input.Constraint:
size(scale-vector) == input.shape[axis]
.For
i == axis
,scale.shape[i] == input.shape[i]
.For
i != axis
,scale.shape == 1
.- For example:
Assume
input.shape = (2, 3, 4, 5)
andaxis = 1
.If
scale
is a vector, thenscale.size
needs to be equal toinput.shape[axis]
; that is, equal to3
.This is broadcasted to
(1, 3, 1, 1)
.
- If
- axis: const tensor<int32, []> (Optional)
- Attributes:
- SrcT: uint8, int8
- DstT: fp16, fp32
- Returns:
- tensor<DstT, [1..]>
random
- class coremltools.converters.mil.mil.ops.defs.iOS15.random.random_bernoulli(**kwargs)[source]
Returns a tensor with the specified shape, with random values from a Bernoulli distribution.
\[\begin{split}f(k) = \begin{cases}1-p &\text{if } k = 0\\ p &\text{if } k = 1\end{cases}\end{split}\]for \(k\) in \(\{0, 1\}\).
- Parameters:
- shape: <K, i32> (Required)
Target output tensor shape.
K
is the rank of the output tensor.shape[k] > 0
fork = 0,..., K-1
.
- prob: const<T> (Optional)
The probability of sampling
1
. Defaults to0.5
.
- seed: const<i32> (Optional)
Seed to create a reproducible sequence of values across multiple invokes.
- Attributes:
- T: fp16, fp32
- Returns:
- <*, T>
A tensor of the given target output shape filled with random values.
See also
- class coremltools.converters.mil.mil.ops.defs.iOS15.random.random_categorical(**kwargs)[source]
Returns random values from a categorical distribution.
- Parameters:
- x: <*D_in, T>
N-dimensional tensor which represents
logits
(event log-probabilities) orprobs
(event probabilities) depending onmode
. The firstN - 1
dimensions specifies distributions, and the last dimension represents a vector of probabilities.
- mode: const<str> (Optional)
One of
['logits', 'probs']
. Defaults tologits
. When set toprobs
, an element-wise log layer will be added to calculate logits.- size: const<i32> (Optional)
Number of samples to draw. Defaults to
1
. When set as1
, it’s categorical distribution. When set larger than1
, it’s actually multinomial distribution by drawing with replacement. It means that when a sample index is drawn, it can be drawn again. The categorical distribution is a special case of the multinomial distribution, giving the probabilities of potential outcomes of a single drawing rather than multiple drawings.- seed: const<i32> (Optional)
Seed to create a reproducible sequence of values across multiple invokes.
- Attributes:
- T: fp16, fp32
- Returns:
- <*D_in[:-1] + [size], T>
A tensor of the given target output shape filled with random values.
See also
- class coremltools.converters.mil.mil.ops.defs.iOS15.random.random_normal(**kwargs)[source]
Returns a tensor with the specified shape, with random values from a normal distribution.
- Parameters:
- shape: <K, i32> (Required)
Target output tensor shape.
K
is the rank of the output tensor.shape[k] > 0
fork = 0,..., K-1
.
- mean: const<T> (Optional)
The mean (center) of the normal distribution. Defaults to 0.0.
- stddev: const<T> (Optional)
The standard deviation (width) of the normal distribution. Defaults to
1.0
.- seed: const<i32> (Optional)
Seed to create a reproducible sequence of values across multiple invokes.
- Attributes:
- T: fp16, fp32
- Returns:
- <*, T>
A tensor of the given target output shape filled with random values.
See also
- class coremltools.converters.mil.mil.ops.defs.iOS15.random.random_uniform(**kwargs)[source]
Returns a tensor with the specified shape with random values from a uniform distribution. Samples are uniformly distributed over the half-open interval
[low, high)
(includes low, but excludes high).\[p(x) = \frac{1}{high - low}\]For a real number \(x\).
When
high == low
, values oflow
will be returned. Ifhigh < low
, the results are officially undefined and may eventually raise an error.- Parameters:
- shape: <K, i32> (Required)
Target output tensor shape.
K
is the rank of the output tensor.shape[k] > 0
fork = 0,..., K-1
.
- low: const<T> (Optional)
Lower boundary of the output interval (inclusive). Defaults to
0.0
.
- high: const<T> (Optional)
Upper boundary of the output interval (exclusive). Defaults to
1.0
.
- seed: const<i32> (Optional)
Seed to create a reproducible sequence of values across multiple invokes.
- Attributes:
- T: fp16, fp32
- Returns:
- <*, T>
A tensor of the given target output shape filled with random values.
See also
recurrent (iOS 15+)
- class coremltools.converters.mil.mil.ops.defs.iOS15.recurrent.gru(**kwargs)[source]
Gated Recurrent Unit (GRU)
\[r_t = \rm{recurrent\_activation}(W_{ir} x_t + b_{ir} + W_{hr} h_{t-1} + b_{hr})\]\[z_t = \rm{recurrent\_activation}(W_{iz} x_t + b_{iz} + W_{hz} h_{t-1} + b_{hz})\]\[o_t = \rm{activation}(W_{io} x_t + b_{io} + r_t * W_{ho} h_{t-1} + b_{ho})\]\[h_t = (1 − z_t) * o_t + z_t * h_{t−1}\]Where:
\(W_{i[r|o|z]}\) are state input weights for reset, output and update gate, respectively.
\(b_{i[r|o|z]}\) are input biases for reset, output and update gate, respectively.
\(W_{h[r|o|z]}\) are recurrent/hidden weights on hidden state to reset, output, and update gates, respectively.
\(b_{h[r|o|z]}\) are recurrent/hidden biases on hidden state to reset, output, and update gates, respectively.
\(h_t\) is the hidden state at time
t
.\(x_t\) is the input at time
t
.\(h_{t-1}\) is the hidden state of the layer at time
t-1
or the initial hidden state at time0
.\(r_t\), \(o_t\), and \(z_t\) are the reset, new, and update gates, respectively.
\(*\) is elementwise product.
- Parameters:
- x: <s, b, I, T> (Required)
s
is the sequence length,b
is the batch size, andI
is the input dimension.
- initial_h: <b, H, T> (Required)
H
denotes hidden size.
- weight_ih: const<3*H, I, T> (Required) - Weight matrix
weigh_ih = [W_{ir} | W_{io} | W_{iz}]
where[a|b]
denotes column concatenation and[a, b]
denotes row concatenation.W_{ir}
,W_{io}
, andW_{iz}
have shape(H, I)
.
- weight_hh: const<3*H, H, T> (Required) - Weight matrix
weight_hh = [W_{hr} | W_{ho} | W_{hz}]
:W_{hr}
,W_{ho}
, andW_{hz}
have shape(H, H)
.
- bias: const<3*H, T> (Optional) [Default all 0s]
bias[0]
are input-hidden and hidden-hidden bias.3*H
are biases for[b_{ir} | b_{io} | b_{hz}]
.
- direction: const<str> (Optional) [Default=forward]
Either
forward
orreverse
.
- output_sequence: const<bool> (Optional) [Default=False]
Outputs every step if
True
.
- recurrent_activation: const<str> (Optional) [Default=sigmoid]
Activation applied on update and reset gate.
- activation: const<str> (Optional) [Default=tanh]
Activation applied on output gate.
- Attributes:
- T: fp32
- Returns:
- <s, b, H, T> or <1, b, H, T>
If
output_sequence == True
(hidden states from every step):<s, b, H, T>
.Else
<1, b, H, T>
(hidden states of the final step).
- <b, H, T>
Hidden states of the final step.
- class coremltools.converters.mil.mil.ops.defs.iOS15.recurrent.lstm(**kwargs)[source]
Long Short-Term Memory (LSTM)
\[i_t = \rm{recurrent\_activation}(W_{ii} x_t + B_{ii} + W_{hi} h_{t-1} + B_{hi})\]\[f_t = \rm{recurrent\_activation}(W_{if} x_t + B_{if} + W_{hf} h_{t-1} + B_{hf})\]\[z_t = \rm{cell\_activation}(W_{iz} x_t + B_{iz} + W_{hz} h_{t-1} + B_{hz})\]\[o_t = \rm{recurrent\_activation}(W_{io} x_t + B_{io} + W_{ho} h_{t-1} + B_{ho})\]\[c_t = f_t * c_{t-1} + i_t * z_t\]\[h_t = o_t * \rm{activation(c_t)}\]Where:
\(i_t\), \(f_t\), \(o_t\), and \(z_t\) are input, forget, output, and cell gates, respectively, at time
t
.\(c_t\) is cell state at time
t
.\(h_t\) is the hidden state at time
t
.\(W_{ii}\), \(W_{if}\), \(W_{io}\), and \(W_{iz}\) are input weights for input, forget, output, and cell gate, respectively.
\(B_{ii}\), \(B_{if}\), \(B_{io}\), and \(B_{iz}\) are input biases for input, forget, output, and cell gate, respectively.
\(W_{hi}\), \(W_{hf}\), \(W_{ho}\), and \(W_{hz}\) are recurrent weights for input, forget, output, and cell gate, respectively.
\(B_{hi}\), \(B_{hf}\), \(B_{ho}\), and \(B_{hz}\) are recurrent weights for input, forget, output, and cell gate, respectively.
- Parameters:
- x: <s, b, I, T> (Required)
s
is the sequence length,b
is the batch size, andI
is the input dimension.
- initial_h: <b, DIRECTIONS*H, T> (Required)
Initial hidden state.
DIRECTIONS = 1
for uni-directional.DIRECTIONS = 2
for bi-directional LSTM.H
denotes hidden size.[b, :H]
and[b, H:]
represents forward and reverse direction values, respectively.
- initial_c: <b, DIRECTIONS*H, T> (Required)
Initial cell state.
Format is same as
initial_h
.
- weight_ih: const<4*H, I, T> (Required)
Input-hidden weight matrix
Weight tensor should be in order of
[input_gate, forget_gate, output_gate, cell_gate]
.If direction==”bidirectional”, this is applied in forward direction.
If direction==”forward” or “backward” these weights are used.
- weight_hh: const<4*H, H, T> (Required)
Hidden-hidden weight matrix.
Weight tensor should be in order of
[input_gate, forget_gate, output_gate, cell_gate]
.If direction==”bidirectional”, this is applied in forward direction.
If direction==”forward” or “backward” these weights are used.
- bias: const<4*H, T> (Optional, default all 0s)
bias = input-hidden bias + hidden-hidden bias
If direction==”bidirectional”, this is applied in forward direction.
If direction==”forward” or “backward” this bias are used.
- peephole: const<3*H, T> (Optional, default all 0s)
Weight tensor for peephole.
Order is
[input_gate, forget_gate, output_gate]
.Shape of each peephole vector is
(H,)
(H
is hidden size).If direction==”bidirectional”, this is applied in forward direction.
If direction==”forward” or “backward” these weights are used.
- weight_ih_back: const<4*H, I, T> (Optional) -
Input-hidden weight matrix for backward direction for bidirectinal LSTM.
Weight tensor should be in order of
[input_gate, forget_gate, output_gate, cell_gate]
.Must be provided for bidirectional LSTM.
This is only used when direction is “bidirectional”.
For direction=”reverse” use weight_ih instead.
- weight_hh_back: const<4*H, H, T> (Optional) - Hidden-hidden weight matrix
Hidden-hidden weight matrix for backward direction for bidirectinal LSTM.
Weight tensor should be in order of
[input_gate, forget_gate, output_gate, cell_gate]
.Must be provided for bidirectional LSTM.
This is only used when direction is “bidirectional”.
For direction=”reverse” use weight_hh instead.
- bias_back: const<4*H, T> (Optional, default all 0s)
bias = input-hidden bias + hidden-hidden bias.
Bias of backward direction for bidirectional lstm
This is only used when direction is “bidirectional”.
For direction=”reverse” use bias instead.
- peephole_back: const<3*H, T> (Optional, default all 0s)
Weight tensor for peephole in backward direction for bidirectional LSTM.
Order is
[input_gate, forget_gate, output_gate]
.Shape of each peephole vector is
(H,)
(H
is hidden size).Peephole of backward direction for bidirectional lstm
Bias of backward direction for bidirectional lstm
This is only used when direction is “bidirectional”.
For direction=”reverse” use peephole instead.
- direction: const<str> (Optional) [Default=forward]
One of the following:
forward
,reverse
, orbidirectional
.Must match
DIRECTIONAL
in initial states and weight parameters.
- output_sequence: const<bool> (Optional) [Default=False]
Outputs every step if
True
.
- recurrent_activation: const<str> (Optional) [Default=sigmoid]
Activation applied on input, forget, and output gates.
Supported values:
hard_sigmoid
,linear
,relu
,scaled_tanh
,sigmoid
,tanh
- cell_activation: const<str> (Optional) [Default=tanh]
Activation applied on cell gate.
Supported values:
hard_sigmoid
,linear
,relu
,scaled_tanh
,sigmoid
,tanh
- activation: const<str> (Optional) [Default=tanh]
Activation applied on output gate.
Supported values:
hard_sigmoid
,linear
,relu
,scaled_tanh
,sigmoid
,tanh
- clip: const<T> (optional) [Default=None]
Cell gate is clipped to
[-clip, +clip]
.
- Attributes:
- T: fp32
- Returns:
- <s, b, DIRECTIONS*H, T> or <1, b, DIRECTIONS*H, T>
If
output_sequence == True
(hidden states from every step):<s, b, DIRECTIONS*H, T>
.Else
<1, b, DIRECTIONS*H, T>
(hidden states of the final step).
- <b, DIRECTIONS*H, T>
Hidden states of the final step.
- <b, DIRECTIONS*H, T>
Memory state of the final step.
- class coremltools.converters.mil.mil.ops.defs.iOS15.recurrent.rnn(**kwargs)[source]
Recurrent Neural Network (RNN)
\[h_t = \rm{activation}(W_{ih} x_t + b_{ih} + W_{hh} h_{t−1} + b_{hh})\]Where:
\(W_{ih}\) is the input weight.
\(W_{hh}\) is the hidden/recurrent weight.
\(h_t\) is the hidden state at time
t
.\(x_t\) is the input at time
t
.\(h_{t-1}\) is the hidden state of the layer at time
t-1
or the initial hidden state att = 0
.\(b_{ih}\) is the input bias.
\(b_{hh}\) if the hidden/recurrent bias.
- Parameters:
- x: <s, b, I, T> (Required)
s
is the sequence length,b
is the batch size, andI
is the input dimension.
- initial_h: <b, H, T> (Required)
H
denotes hidden size.
- weight_ih: const<H, I, T> (Required) - Input-hidden weight matrix
- weight_hh: const<H, H, T> (Required) - Hidden-hidden weight matrix
- bias: const<H, T> (Optional) [Default all 0s]
bias for input-hidden and hidden-hidden
- direction: const<str> (Optional) [Default=forward]
Either
forward
orreverse
.
- output_sequence: const<bool> (Optional) [Default=False]
Outputs every step if
True
.
- activation: const<str> (Optional) [Default=tanh]
Supported activation functions:
relu
,tanh
,sigmoid
,sigmoid_hard
,scaled_tanh
, andlinear
.
- Attributes:
- T: fp32
- Returns:
- <s, b, H, T> or <1, b, H, T>
If
output_sequence == True
(hidden states from every step):<s, b, H, T>
.Else
<1, b, H, T>
(hidden states of the final step).
- <b, H, T>
Hidden states of the final step.
recurrent (iOS 17+)
- class coremltools.converters.mil.mil.ops.defs.iOS17.recurrent.gru(**kwargs)[source]
Gated Recurrent Unit (GRU)
The only difference between this version and the iOS 15
gru
is adding the support for fp16.
recurrent (iOS 18+)
- class coremltools.converters.mil.mil.ops.defs.iOS18.recurrent.gru(**kwargs)[source]
Gated Recurrent Unit (GRU)
The only difference between this version and the iOS 17
gru
is the reset_after parameter. This parameter is optional and defaults to False. When True, the reset gate is applied before the elementwise matrix multiplication.
reduction (iOS 15+)
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_argmax(**kwargs)[source]
Computes the indices of the maximum value across dimensions of a tensor. In case of ties, the identity of the return value is not guaranteed.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axis: const<i32> (Optional)
The dimension to reduce. Default is
-1
.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
by removing the dimension specified inaxis
. IfTrue
, retain reduced axis with length1
.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- <*, int32>
References
See tf.math.argmax.
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_argmin(**kwargs)[source]
Computes the indices of the minimum value across dimensions of a tensor. In case of ties, the identity of the return value is not guaranteed.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axis: const<i32> (Optional)
The dimension to reduce. Default is
-1
.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
by removing the dimension specified inaxis
, otherwise retain reduced axis with length1
.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- <*, int32>
References
See tf.math.argmin.
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_l1_norm(**kwargs)[source]
Computes the L1 normalization of elements across given dimensions of the input tensor.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axes: const<K,i32> (Optional, default=”None”, reduce on all axes.)
The dimensions to reduce.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
for each entry inaxes
, otherwise retain reduced axes with length1
.
- Attributes:
- T: i32, fp16, fp32
- Returns:
- <*,T>
Scalar or tensor: The reduced tensor.
References
See reduce_mean.
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_l2_norm(**kwargs)[source]
Computes the L2 normalization of elements across given dimensions of the input tensor.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axes: const<K,i32> (Optional, default=”None”, reduce on all axes.)
The dimensions to reduce.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
for each entry inaxes
, otherwise retain reduced axes with length1
.
- Attributes:
- T: i32, fp16, fp32
- Returns:
- <*,T>
Scalar or tensor: The reduced tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_log_sum(**kwargs)[source]
Computes the natural logarithm of the sum of all the elements across given dimensions of the input tensor.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axes: const<K,i32> (Optional, default=”None”, reduce on all axes.)
The dimensions to reduce.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
for each entry inaxes
, otherwise retain reduced axes with length1
.
- Attributes:
- T: i32, fp16, fp32
- Returns:
- <*,T>
Scalar or tensor: The reduced tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_log_sum_exp(**kwargs)[source]
Computes the natural logarithm of the sum of the exponentials of the elements across given dimensions of the input tensor. It is a smooth approximation of the maximum function, more numerically stable than
log(sum(exp(input)))
. It avoids overflows caused by taking theexp
of large inputs and underflows caused by taking thelog
of small inputs.- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axes: const<K,i32> (Optional, default=”None”, reduce on all axes.)
The dimensions to reduce.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
for each entry inaxes
, otherwise retain reduced axes with length1
.
- Attributes:
- T: i32, fp16, fp32
- Returns:
- <*,T>
Scalar or tensor: The reduced tensor.
References
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_max(**kwargs)[source]
Computes the maximum of elements across given dimensions of the input tensor.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axes: const<K,i32> (Optional, default=”None”, reduce on all axes.)
The dimensions to reduce.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
for each entry inaxes
, otherwise retain reduced axes with length1
.
- Attributes:
- T: i32, fp16, fp32
- Returns:
- <*,T>
Scalar or tensor: The reduced tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_mean(**kwargs)[source]
Computes the mean of elements across given dimensions of the input tensor.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axes: const<K,i32> (Optional, default=”None”, reduce on all axes.)
The dimensions to reduce.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
for each entry inaxes
, otherwise retain reduced axes with length1
.
- Attributes:
- T: i32, fp16, fp32
- Returns:
- <*,T>
Scalar or tensor: The reduced tensor.
References
For an example, see tf.math.reduce_mean.
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_min(**kwargs)[source]
Computes the minimum of elements across given dimensions of the input tensor.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axes: const<K,i32> (Optional, default=”None”, reduce on all axes.)
The dimensions to reduce.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
for each entry inaxes
, otherwise retain reduced axes with length1
.
- Attributes:
- T: i32, fp16, fp32
- Returns:
- <*,T>
Scalar or tensor: The reduced tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_prod(**kwargs)[source]
Computes the product of elements across given dimensions of the input tensor.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axes: const<K,i32> (Optional, default=”None”, reduce on all axes.)
The dimensions to reduce.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
for each entry inaxes
, otherwise retain reduced axes with length1
.
- Attributes:
- T: i32, fp16, fp32
- Returns:
- <*,T>
Scalar or tensor: The reduced tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_sum(**kwargs)[source]
Computes the sum of elements across given dimensions of the input tensor.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axes: const<K,i32> (Optional, default=”None”, reduce on all axes.)
The dimensions to reduce.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
for each entry inaxes
, otherwise retain reduced axes with length1
.
- Attributes:
- T: i32, fp16, fp32
- Returns:
- <*,T>
Scalar or tensor: The reduced tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS15.reduction.reduce_sum_square(**kwargs)[source]
Computes the sum of squares of elements across given dimensions of the input tensor.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axes: const<K,i32> (Optional, default=”None”, reduce on all axes.)
The dimensions to reduce.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
for each entry inaxes
, otherwise retain reduced axes with length1
.
- Attributes:
- T: i32, fp16, fp32
- Returns:
- <*,T>
Scalar or tensor: The reduced tensor.
reduction (iOS 17+)
- class coremltools.converters.mil.mil.ops.defs.iOS17.reduction.reduce_argmax(**kwargs)[source]
Computes the indices of the maximum value across dimensions of a tensor. In case of ties, the identity of the return value is not guaranteed.
- The differences between this version and the iOS 15
reduce_argmax
are: The output supports uint16 dtype.
New optional input
output_dtype
.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axis: const<i32> (Optional)
The dimension to reduce. Default is
-1
.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
by removing the dimension specified inaxis
.If
True
, retain reduced axis with length1
.
- output_dtype: const<str> (Optional)
Possible values:
uint16
,int32
.If set, then value type inference will output using that dtype.
Default is
int32
.
- Attributes:
- T: fp16, fp32, i32
- U: int32, uint16
- Returns:
- <*, U>
- The differences between this version and the iOS 15
- class coremltools.converters.mil.mil.ops.defs.iOS17.reduction.reduce_argmin(**kwargs)[source]
Computes the indices of the minimum value across dimensions of a tensor. In case of ties, the identity of the return value is not guaranteed.
- The differences between this version and the iOS 15
reduce_argmin
are: The output supports uint16 dtype.
New optional input
output_dtype
.
- Parameters:
- x: <*,T> (Required)
Must be 1-dimensional or higher.
- axis: const<i32> (Optional)
The dimension to reduce. Default is
-1
.
- keep_dims: const<bool> (Optional, default=False)
If
False
, the rank is reduced by1
by removing the dimension specified inaxis
, otherwise retain reduced axis with length1
.
- output_dtype: const<str> (Optional)
Possible values:
uint16
,int32
.If set, then value type inference will output using that dtype.
Default is
int32
.
- Attributes:
- T: fp16, fp32, i32
- U: int32, uint16
- Returns:
- <*, U>
- The differences between this version and the iOS 15
scatter_gather (iOS 15+)
- class coremltools.converters.mil.mil.ops.defs.iOS15.scatter_gather.gather(**kwargs)[source]
Gather slices from input
x
along dimensionaxis
according toindices
, similar to tf.gather.If
indices
is scalar (0-D):
\[output[p_0, ..., p_{axis-1}, ~~~~~~~~~~~~~~~~~~~~~~~~ p_{axis+1}, ..., p_{rank(x)-1}] =\]\[x[p_0, ..., p_{axis-1}, ~~~~~~~~~ indices, ~~~~~~~~ p_{axis+1}, ..., p_{rank(x)-1}]\]Where
rank(x)
is the rank ofx
. Theoutput
has rankrank(x) - 1
.If
indices
is 1-D tensor:
\[output[p_0, ..., p_{axis-1}, ~~~~~~~~~~~~~ i, ~~~~~~~~~~~~~ p_{axis+1}, ..., p_{rank(*D)-1}] =\]\[x[p_0, ..., p_{axis-1}, ~~~~~~~~ indices[i], ~~~~~~~~ p_{axis+1}, ..., p_{rank(*D)-1}]\]The output has rank
rank(x)
.In general:
\[output[p_0, ..., p_{axis-1}, ~~~~~~~~ i_0, ..., i_{M-1}, ~~~~~~~~ p_{axis+1}, ..., p_{rank(x)-1}] =\]\[x[p_0, ..., p_{axis-1}, ~~~~~~~ indices[i_0, ..., i_{M-1}], ~~~~~~~ p_{axis+1}, ..., p_{rank(x)-1}]\]Where
M = rank(indices)
.- Parameters:
- x: tensor<*D, T> (Required)
- indices: tensor<*N, i32> (Required)
Indices values may be negative. More precisely,
-D[axis]<= v < D[axis]
forv
inindices
.
- axis: const i32 (Optional. Default=``0``)
Negative axis is supported.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*K, T>
Where
K = D[:axis] + N + D[axis+1:]
.
References
See tf.gather.
- class coremltools.converters.mil.mil.ops.defs.iOS15.scatter_gather.gather_along_axis(**kwargs)[source]
Take the values along
axis
at locationsindices
.\[idx = indices[p_0, ..., p_{axis-1}, i, p_{axis+1}, ..., p_D]\]\[output[p_0, ..., p_{axis-1}, i, p_{axis+1}, ..., p_D] = = x[p_0, ..., p_{axis-1}, idx, p_{axis+1}, ..., p_D]\]- Parameters:
- x: tensor<*D, T> (Required)
- indices: tensor<*K, i32> (Required)
rank(indices) == rank(x)
.
- axis: const i32 (Optional):
Default to
0
.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*D, T>:
Output tensor has the same shape as
indices
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.scatter_gather.gather_nd(**kwargs)[source]
Gather slices from
x
according toindices
, similar to tf.gather_nd.The
indices
is a K-dim tensor, whereindices[i_0,...,i_{K-2}]
defines a slice ofx
:\[output[i_0, ..., i_{K-2}]= x[indices[i_0, ..., i_{K-2}]]\]Where
K = rank(indices)
andx[indices[i_0, ..., i_{K-2}]]
has rankrank(x) - indices.shape[-1]
.- Parameters:
- x: tensor<*D, T> (Required)
- indices: tensor<*K, i32> (Required)
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*V, T>
V = K[:-1] + D[K[-1]:]
, whereD = x.shape
andK = indices.shape
.
References
See tf.gather_nd.
- class coremltools.converters.mil.mil.ops.defs.iOS15.scatter_gather.scatter(**kwargs)[source]
Scatter
updates
todata
at locationsindices
at dimensionaxis
by operationmode
.Example:
mode == update
.For
i
in[0, len(indices)]
:
\[output[p_0, ..., p_{axis-1}, indice[i], p_{axis+1}, ..., p_D] =\]\[updates[p_0, ..., p_{axis-1}, i, p_{axis+1}, ..., p_D]\]For
j != i
:
\[output[p_0, ..., p_{axis-1}, j, p_{axis+1}, ..., p_D] =\]\[data[p_0, ..., p_{axis-1}, j, p_{axis+1}, ..., p_D]\]Example:
mode == add
.For
i
in[0, len(indices)]
:
\[output[p_0, ..., p_{axis-1}, indice[i], p_{axis+1}, ..., p_D] =\]\[updates[p_0, ..., p_{axis-1}, i, p_{axis+1}, ..., p_D] +\]\[x[p_0, ..., p_{axis-1}, indice[i], p_{axis+1}, ..., p_D]\]For
j != i
:
\[output[p_0, ..., p_{axis-1}, j, p_{axis+1}, ..., p_D] =\]\[data[p_0, ..., p_{axis-1}, j, p_{axis+1}, ..., p_D]\]- Parameters:
- data: tensor<*D, T> (Required)
- indices: tensor<[C], i32> (Required)
1-D tensor.
- updates: tensor<*K, T> (Required)
K = data.shape[:axis] + [len(indices)] + data.shape[axis+1:]
.
- axis: const i32 (Optional)
Default to
0
.
- mode: const string (Optional)
Can be the following modes:
update
,add
,sub
,mul
,div
,max
,min
.Default value is
update
.
- Attributes:
- T: fp16, fp32, i32
- For example:
data = [[1, 2, 3], [4, 5, 6]] indices = [1, 0] updates = [[5, 6, 7], [8, 9, 10]] axis = 0 mode = “update”
- produces:
[[9, 11, 13], [9, 11, 13]]
- Returns:
- tensor<*D, T>
With the same type and shape as input
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.scatter_gather.scatter_along_axis(**kwargs)[source]
Scatter
updates
todata
at locationsindices
alongaxis
dimension usingmode
operation.Example:
mode == update
.For
i
in[0, len(indices)]
:
\[idx = indices[p_0, ..., p_{axis-1}, i, p_{axis+1}, ..., p_D]\]\[output[p_0, ..., p_{axis-1}, idx, p_{axis+1}, ..., p_D] =\]\[updates[p_0, ..., p_{axis-1}, i, p_{axis+1}, ..., p_D]\]For
j! = i
:
\[output[p_0, ..., p_{axis-1}, j, p_{axis+1}, ..., p_D] =\]\[data[p_0, ..., p_{axis-1}, j, p_{axis+1}, ..., p_D]\]Example:
mode == add
.For
i
in[0, len(indices)]
:
\[idx = indices[p_0, ..., p_{axis-1}, i, p_{axis+1}, ..., p_D]\]\[output[p_0, ..., p_{axis-1}, idx, p_{axis+1}, ..., p_D] =\]\[updates[p_0, ..., p_{axis-1}, i, p_{axis+1}, ..., p_D] +\]\[x[p_0, ..., p_{axis-1}, indice[i], p_{axis+1}, ..., p_D]\]For
j! = i
:
\[output[p_0, ..., p_{axis-1}, j, p_{axis+1}, ..., p_D] =\]\[data[p_0, ..., p_{axis-1}, j, p_{axis+1}, ..., p_D]\]- Parameters:
- data: tensor<*D, T> (Required)
- indices: tensor<*K, i32> (Required)
rank(indices) == rank(data)
.
- updates: tensor<*K, T> (Required)
Must be the same shape as
indices
.
- axis: const i32 (Optional)
Default to
0
.
- mode: const string (Optional)
Default to
add
.Can be the following modes:
update
,add
,sub
,mul
,div
,max
,min
.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*D, T>
With the same type and shape as input
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.scatter_gather.scatter_nd(**kwargs)[source]
Scatter
updates
todata
at locationsindices
.The
indices
is a K-dim tensor, whereindices[i_0,...,i_{K-2}]
defines a slice ofdata
,K = rank(indices)
, anddata[i_0, ..., i_{K-2}]
has rankrank(data) - indices.shape[-1]
. Concretely, this means the index is stored in the last dim ofindices
, e.g. take aK == 2
example\[indices = [[0, 1], [0, 2]]\]where
indices[0]
/[0, 1]
andindices[1]
/[0, 2]
are two indices that get applied todata
Example:
mode == update
: Theoutput
is set todata
initially, and the op updatesoutput
as follows:
\[output[indices[i_0, ..., i_{K-2}]]= updates[i_0, ..., i_{K-2}]\]Example:
mode == add
. The update rule is:
\[output[indices[i_0, ..., i_{K-2}]] += updates[i_0, ..., i_{K-2}]\]- Parameters:
- data: tensor<*D, T> (Required)
- indices: tensor<*E, i32> (Required)
indices.shape[-1] <= data.rank
- updates: tensor<*F, T> (Required)
Must be the shape as
indices.shape[:-1] + data.shape[indices.shape[-1]:]
.
- mode: const string (Optional)
Default to
add
.Can be the following modes:
update
,add
,sub
,mul
,div
,max
,min
.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*D, T>
A tensor with the same shape and type as
data
.
scatter_gather (iOS 16+)
- class coremltools.converters.mil.mil.ops.defs.iOS16.scatter_gather.gather(**kwargs)[source]
The iOS16 version. This section documents only the differences between this version and the iOS 15
gather
.This version supports
batch_dims
, similar to tf.gather. Input parameterindices
now supportsint16
anduint16
.- Parameters:
- x: tensor<*D, T> (Required)
- indices: tensor<*N, I> (Required)
Indices values may be negative. More precisely,
-D[axis]<= v < D[axis]
forv
inindices
.
- axis: const i32 (Optional. Default=``0``)
Negative axis is supported.
- batch_dims: const i32 (Optional. Default=``0``)
The number of batch dimensions.
- Attributes:
- T: fp16, fp32, i32
- I: uint16, int16, int32
- Returns:
- tensor<*K, T>
Where
K = D[:axis] + N[batch_dims:] + D[axis+1:]
.
References
See tf.gather.
- class coremltools.converters.mil.mil.ops.defs.iOS16.scatter_gather.gather_nd(**kwargs)[source]
The iOS16 version. This section documents only the differences between this version and the iOS 15
gather_nd
.This version supports
batch_dims
. Input parameterindices
now supportsint16
anduint16
.- Parameters:
- x: tensor<*D, T> (Required)
- indices: tensor<*K, I> (Required)
- batch_dims: const i32 (Optional. Default=``0``)
The number of batch dimensions.
- Attributes:
- T: fp16, fp32, i32
- I: uint16, int16, int32
- Returns:
- tensor<*V, T>
V = K[:-1] + D[batch_dims + K[-1]:]
, whereD = x.shape
andK = indices.shape
.
References
See tf.gather_nd.
scatter_gather (iOS 17+)
- class coremltools.converters.mil.mil.ops.defs.iOS17.scatter_gather.gather(**kwargs)[source]
Gather slices from input
x
along dimensionaxis
according toindices
, similar to tf.gather_nd.This section documents only the differences between this version and the iOS 16
gather
. The major differences are as follows:Input parameter
x
adds support forint16
,uint16
,int8
, anduint8
.Input parameter
indices
adds support forint8
anduint8
.Input parameter
indices
now supports only positive values – negative values are considered out-of-bound. If support for negative indices is required, they must be explicitly converted to positive values, using the following:index = iOS17.select(index >= 0, index, index + max_index)
- New input parameter called
validate_indices
has been added to all gather ops. Its behavior is as follows: If
True
, it raises a runtime (possibly also a compile-time) exception for out-of-bound values of theindices
parameter.If
False
, absolutely no checking is performed for out-of-bound values ofindices
either at compile or runtime. Behavior for out-of-bound indices is undefined but memory safe.
- New input parameter called
- Parameters:
- x: tensor<*D, T> (Required)
- indices: tensor<*N, I> (Required)
Indices values may be negative. More precisely,
-D[axis]<= v < D[axis]
forv
inindices
.
- axis: const i32 (Optional. Default=``0``)
Negative axis is supported.
- batch_dims: const i32 (Optional. Default=``0``)
The number of batch dimensions.
- validate_indices: const bool (Optional)
If
True
, it raises a runtime (possibly also a compile-time) exception for out-of-bound values of theindices
parameter.If
False
, absolutely no checking is performed for out-of-bound values ofindices
either at compile or runtime. Behavior for out-of-bound indices is undefined but memory safe.Default value is
False
.
- Attributes:
- T: fp16, fp32, int32, int16, uint16, int8, uint8
- I: int32, int16, uint16, int8, uint8
- Returns:
- tensor<*K, T>
Where
K = D[:axis] + N[batch_dims:] + D[axis+1:]
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.scatter_gather.gather_along_axis(**kwargs)[source]
Take the values along
axis
at locationsindices
.The major differences from the previous version are illustrated in
gather
. For more information, see the iOS 16gather_along_axis
.- Parameters:
- x: tensor<*D, T> (Required)
- indices: tensor<*K, I> (Required)
rank(indices) == rank(x)
.
- axis: const i32 (Optional):
Default to
0
.
- validate_indices: const bool (Optional)
If
True
, it raises a runtime (possibly also a compile-time) exception for out-of-bound values of theindices
parameter.If
False
, absolutely no checking is performed for out-of-bound values ofindices
either at compile or runtime. Behavior for out-of-bound indices is undefined but memory safe.Default value is
False
.
- Attributes:
- T: fp16, fp32, int32, int16, uint16, int8, uint8
- I: int32, int16, uint16, int8, uint8
- Returns:
- tensor<*D, T>:
Output tensor has the same shape as
indices
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.scatter_gather.gather_nd(**kwargs)[source]
Gather slices from
x
according toindices
, similar to tf.gather_nd.The major differences from the previous version are illustrated in
gather
. For more information, see the iOS 16gather_nd
.- Parameters:
- x: tensor<*D, T> (Required)
- indices: tensor<*K, I> (Required)
- batch_dims: const i32 (Optional. Default=``0``)
The number of batch dimensions.
- validate_indices: const bool (Optional)
If
True
, it raises a runtime (possibly also a compile-time) exception for out-of-bound values of theindices
parameter.If
False
, absolutely no checking is performed for out-of-bound values ofindices
either at compile or runtime. Behavior for out-of-bound indices is undefined but memory safe.Default value is
False
.
- Attributes:
- T: fp16, fp32, int32, int16, uint16, int8, uint8
- I: int32, int16, uint16, int8, uint8
- Returns:
- tensor<*V, T>
V = K[:-1] + D[batch_dims + K[-1]:]
, whereD = x.shape
andK = indices.shape
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.scatter_gather.scatter(**kwargs)[source]
Scatter
updates
todata
at locationsindices
at dimensionaxis
by the operationmode
.This section documents only the differences between this version and the iOS 15
scatter
. The major differences are as follows:Input parameter
indices
now supports only positive values – negative values are considered out-of-bound. If support for negative indices is required, they must be explicitly converted to positive values using the following:index = iOS17.select(index >= 0, index, index + max_index)
- New input parameter called
validate_indices
has been added to all scatter ops. Its behavior is as follows: If
True
, it raises a runtime (possibly also a compile-time) exception for out-of-bound values of theindices
parameter.If
False
, absolutely no checking is performed for out-of-bound values ofindices
either at compile or runtime. Behavior for out-of-bound indices is undefined but memory safe.
- New input parameter called
- Parameters:
- data: tensor<*D, T> (Required)
- indices: tensor<[C], i32> (Required)
1-D tensor.
- updates: tensor<*K, T> (Required)
K = data.shape[:axis] + [len(indices)] + data.shape[axis+1:]
.
- axis: const i32 (Optional)
Default to
0
.
- mode: const string (Optional)
Can be the following modes:
add
,div
,max
,min
,mul
,sub
,update
.Default value is
update
.
- validate_indices: const bool (Optional)
If
True
, it raises a runtime (possibly also a compile-time) exception for out-of-bound values of theindices
parameter.If
False
, absolutely no checking is performed for out-of-bound values ofindices
either at compile or runtime. Behavior for out-of-bound indices is undefined but memory safe.Default value is
False
.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*D, T>
With the same type and shape as input
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.scatter_gather.scatter_along_axis(**kwargs)[source]
Scatter
updates
todata
at locationsindices
alongaxis
dimension using themode
operation.The major differences from the previous version are illustrated in
scatter
. For more information, see the iOS 15scatter_along_axis
.- Parameters:
- data: tensor<*D, T> (Required)
- indices: tensor<*K, i32> (Required)
rank(indices) == rank(data)
.
- updates: tensor<*K, T> (Required)
Must be the same shape as
indices
.
- axis: const i32 (Optional)
Default to
0
.
- mode: const string (Optional)
Default to
add
.Can be the following modes:
add
,div
,max
,min
,mul
,sub
,update
.
- validate_indices: const bool (Optional)
If
True
, it raises a runtime (possibly also a compile-time) exception for out-of-bound values of theindices
parameter.If
False
, absolutely no checking is performed for out-of-bound values ofindices
either at compile or runtime. Behavior for out-of-bound indices is undefined but memory safe.Default value is
False
.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*D, T>
With the same type and shape as input
x
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.scatter_gather.scatter_nd(**kwargs)[source]
Scatter
updates
todata
at locationsindices
.The major differences from the previous version are illustrated in
scatter
. For more information, see the iOS 15scatter_nd
.- Parameters:
- data: tensor<*D, T> (Required)
- indices: tensor<*K, i32> (Required)
- updates: tensor<*K, T> (Required)
Must be the shape as
K[:-1]+data.shape[K[-1]:]
.
- mode: const string (Optional)
Default to
add
.Can be the following modes:
add
,div
,max
,min
,mul
,sub
,update
.
- validate_indices: const bool (Optional)
If
True
, it raises a runtime (possibly also a compile-time) exception for out-of-bound values of theindices
parameter.If
False
, absolutely no checking is performed for out-of-bound values ofindices
either at compile or runtime. Behavior for out-of-bound indices is undefined but memory safe.Default value is
False
.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*D, T>
A tensor with the same shape and type as
data
.
states (iOS 18+)
- class coremltools.converters.mil.mil.ops.defs.iOS18.states.read_state(**kwargs)[source]
Read a state, copy its content into a new variable, and return the variable. The type of the output variable depends on the type that is wrapped inside the state, which could be
types.tensor
.- Parameters:
- input: state<ST> (Required)
- Attributes:
- ST: tensor
- Returns:
- ST
tensor_operation (iOS 15+)
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.argsort(**kwargs)[source]
Returns a tensor containing the indices of the sorted values along a given axis of the input tensor.
- Parameters:
- x: <*?, T> (Required)
Input tensor.
- * axis: const<i32> (Optional)
Defaults to
-1
(the last dimension).Axis to perform the operation.
- * ascending: const<bool> (Optional)
Defaults to
False
, sort in descending order.True
to sort in ascending order.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, int32>
Tensor containing the indices of the sorted values
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.band_part(**kwargs)[source]
Returns a tensor setting everything outside a center band to zeros for the innermost matrix. That is, band(m, n) = (lower < 0 || (m-n) <= lower) && (upper < 0 || (n-m) <= upper) output[i, j, k, …, m, n] = band(m, n) * input[i, j, k, …, m, n]
Special cases:
band_part(x, 0, -1)
returns upper triangular part.band_part(x, -1, 0)
returns lower triangular part.band_part(x, 0, 0)
returns diagonal.
- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- lower: const<i32> (Optional)
Number of lower / below sub-diagonals to keep. If negative, keep entire lower triangle.
Defaults to
-1
(keep the entire lower triangle).
- upper: const<i32> (Optional)
Number of upper / above sub-diagonals to keep. If negative, keep entire lower triangle.
Defaults to
-1
(keep the entire upper triangle).
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*?, T>
Same type and shape as the input tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.concat(**kwargs)[source]
Concatenates tensors along a dimension.
- Parameters:
- values: Tuple[tensor<[d0, d1, …, d_axis_i, …, d_n],T>] (Required)
The number of dimensions of the input tensors must match, and all dimensions except
axis
must be equal.The tensors may be variadic, but the number of tensors must be determined at compile time (i.e. a tuple).
- axis: const<int32> (Required)
The dimension along which to concatenate. Must be in the range
[-rank(values[i]), rank(values[i]))
for alli
.
- interleave: const<bool> (Optional, Default=False)
If True, concatenate the inputs by interleaving them.
If True, all the inputs to this op must have the exact same shape.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<[d0, d1,…d_axis_out, …, d_n],T>
Where
d_axis_out = sum(d_axis_i)
.
Examples
in1 = [[1, 2], [3, 4], [5, 6]] # shape (3, 2) in2 = [[7, 8], [9, 10], [11, 12]] # shape (3, 2) axis = 0 # output shape is (6, 2) if interleave is False: # default # output[0:3, :] = in1 # output[3:6, :] = in2 output = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]] if interleave is True: # output[0::2, :] = in1 # output[1::2, :] = in2 output = [[1, 2], [7, 8], [3, 4], [9, 10], [5, 6], [11, 12]]
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.cumsum(**kwargs)[source]
Returns the cumulative sum of the input along the given axis.
- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- axis: const<i32> (Optional)
Defaults to
0
.Axis for which the cumulative sum is computed.
- exclusive: const<bool> (Optional)
Defaults to
False
.When set to
False
, inclusive cumsum is computed, that is the first element of the output is identical to the first element in the input.When set to
True
, exclusive cumsum is computed, which makes the first element of output to0
.
- reverse: const<bool> (Optional)
Defaults to
False
.When set to
True
, perform cumsum in the reverse order.
- Attributes:
- T: fp16, fp32, i32
- Returns:
- tensor<*?, T>
Same type and shape as the input tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.fill(**kwargs)[source]
Returns a tensor with a given shape filled with a constant value.
- Parameters:
- shape: tensor<[K], i32> (Required)
Target output tensor shape.
K
is the rank of the output tensor.shape[k] > 0
fork = 0,..., K-1
.
- value: const<T> (Optional)
Defaults to
0.0
.Constant value to fill in.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*?, T>
Tensor with shape determined by the input shape.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.flatten2d(**kwargs)[source]
Flattens input tensor into 2d tensor by flattening dimensions before and after the provided axis.
- Parameters:
- x: tensor<[*d], T> (Required)
Input tensor.
- axis: const<i32> (Optional)
Defaults to
1
.Negative axis is supported.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<d_prior, d_post, T>
d_prior
is product of dimensionsx[:axis]
d_post
is product of dimensionsx[axis:]
Examples
input_shape = (3, ), axis = -1, output_shape = (1, 3)
input_shape = (3, ), axis = 1, output_shape = (3, 1)
input_shape = (4, 3), axis = -1, output_shape = (4, 3)
input_shape = (2, 3, 2), axis = -1, output_shape = (6, 2)
input_shape = (5, 5, 2), axis = 1, output_shape = (5, 10)
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.identity(**kwargs)[source]
Returns a tensor with the same shape and contents as input.
- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*?, T>
Same type and shape as the input tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.non_maximum_suppression(**kwargs)[source]
Applies non-maximum suppression (NMS) on the input box coordinates according to their intersection-over-union (IoU).
NMS selects a subset of bounding boxes in descending order of score, and removes boxes that have high intersection-over-union (IOU) overlap with previously-selected boxes.
- Parameters:
- boxes: tensor<[n, B, 4], T> (Required)
Box coordinates on which to perform NMS. The coordinates are expected in CENTER_SIZE_WIDTH_FIRST format (x, y, width, height) where (x, y) is the center.
- scores: tensor<[n, B, K], T> (Required)
Scores for each one of the boxes. K is the number of classes.
- iou_threshold: const<T> (Required)
The intersection over union (
IoU
) threshold over which boxes are suppressed. NMS remove all overlapping boxes withIoU > iou_threshold
.
- score_threshold: const<T> (Required)
Before IoU suppression is performed, boxes with class scores below this threshold are rejected.
- max_boxes: const<i32> (Required)
Maximum number of boxes to select. If the number of surviving boxes are less, output is padded up to this number.
- per_class_suppression: const<bool> (Optional)
Defaults to
False
.If
True
, suppression is performed independently within boxes of each class.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n, max_boxes, 4], T>
Coordinates of selected boxes.
- tensor<[n, max_boxes, K], T>
Scores of selected boxes.
- tensor<[n, max_boxes], i32>
Indices of selected boxes.
- tensor<[n], i32>
Number of boxes selected for each batch.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.non_zero(**kwargs)[source]
Returns the indices of the elements in the given tensor that are non-zero.
- Parameters:
- x: tensor<*?, T> (Required)
Tensor, values selected at indices where its values is not equal to
0
.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<[N, R], int32>
2-dimensional tensor contains indices of elements that are non-zero. Each row is the index for a non-zero value.
N
is the number of non-zero elements,R
is the rank of the input.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.one_hot(**kwargs)[source]
Returns one-hot vectors whose locations represented in
indices
take theon_value
, while other locations take theoff_value
.- Parameters:
- indices: tensor<[D], i32> (Required)
Tensor, values indicate the locations for each one-hot vector to take the
on_value
.
- one_hot_vector_size: i32 (Required)
Indicates the number of returning vectors.
- axis: const i32 (Optional)
Indicates which dimension to append the new axis.
If the input indices is rank
D
, the output tensor will have rankD+1
.Defaults to
-1
(the last dimension).
- on_value: const T (Optional)
Values for locations where defined in
indices
.Defaults to
1
.
- off_value: const T (Optional)
Defaults to
0
.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*?,T>
A tensor that contains one-hot vectors.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.pad(**kwargs)[source]
Pads a tensor.
- Parameters:
- x: tensor<[*D_in], T> (Required)
- pad: tensor<[2*N], i32> (Required)
N <= D_in
. LastN
dimensions ofx
are padded as follows:- For each dimension
i
ofx
ifi >= D_in - N
: pad
pad[2*i]
elements beforex[..,i,..]
.pad
pad[2*i+1]
elements afterx[..,i,..]
.
- For each dimension
If mode is “reflect” then
pad[2*i]
andpad[2*i+1]
can be at mostD[i]-1
.If mode is “replicate” then
pad[2*i]
andpad[2*i+1]
can be at mostD[i]
.If pad is not a constant, it must be a vector of length
2 * rank(x)
, that is,N == D_in
.
- mode: const<str> (Optional)
Defaults to
constant
.Must be one of the following values:
constant
,reflect
, orreplicate
.
- constant_val: const<T> (Optional)
Defaults to
0
.Constant value to pad. Ignored if
mode != constant
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[*D_out],T>
Tensor with same type as the input.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.range_1d(**kwargs)[source]
Returns a numpy-like 1-D range sequence.
- Parameters:
- start: <T> (Required)
The start point of the sequence.
- end: <T> (Required)
The upper limit of the sequence, exclusive.
- step: <T> (Required)
Number that increments
start
.
- Attributes:
- T: i32, fp16, fp32
- Returns:
- tensor<M, T>
A 1-D tensor, where
M
is the length of the sequence.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.shape(**kwargs)[source]
Returns a 1-dimensional tensor with the shape of the input tensor.
- Parameters:
- x: tensor<[*?], T> (Required)
Input tensor.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<K, i32>
Shape of the input tensor.
K = x.rank
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.split(**kwargs)[source]
Split tensors into a tuple
- Parameters:
- x: <*?,T> (Required)
The tensor to split.
The tensors may be variadic, but the number of tensors must be determined at compile time (i.e. a tuple).
- axis: const<i32> (Required)
The dimension along which to concatenate. Must be in the range
[-rank(x), rank(x))
.
- num_splits: <i32> (Optional)
If specified, divide
x
intonum_splits
tensors alongaxis
. Its behavior depends onsplit_sizes
:If
split_sizes
is defined,num_splits == S
, and the output sizes may be uneven.If
split_sizes
is not defined,value.shape[axis]
must be divisible bynum_splits
, and the output sizes must be even.
At least one of
num_splits
orsplit_sizes
must be provided. Ifsplit_sizes
lengthS
cannot be determined at compile time,num_splits
must be supplied to determine the number of outputs.- split_sizes: const<S, i32> (Optional)
Sizes to split to. The sum of
split_sizes
must equal tovalue.shape[axis]
.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- Tuple[tensor<*?, T>]
Where the length of the tuple is the number of splits (determined from
num_splits
orsplit_sizes
).
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.stack(**kwargs)[source]
Concatenates tensors along a dimension.
- Parameters:
- values: Tuple[tensor<[d0, d1,…d_axis_i, …, d_n], T>] (Required)
All tensors must have identical shape.
- axis: const<i32> (Required)
The dimension along which to concatenate. Must be in the range
[-rank(values[i]), rank(values[i]))
for alli
.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tenor<[d0, d1,…d_axis_out, …, d_n], T>
Where
d_axis_out = sum(d_axis_i)
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.tile(**kwargs)[source]
Returns a new tensor by replicating input
x
multiples times. Dimensioni
ofx
will be replicatedreps[i]
times.- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- reps: tensor<[rank(x)], i32> (Required)
A 1-D tensor with length
rank(x)
, which indicates the number to replicate the input along each dimension.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*?, T>:
An n-D tensor with same type as the input.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_operation.topk(**kwargs)[source]
Returns a tensor containing top or bottom
k
values and the corresponding indices of the input tensor along a given axis.- Parameters:
- x: <*?, T> (Required)
Input tensor.
- k: const<i32> (Optional)
Defaults to
1
.Number of values/indices to be computed along each axis.
- axis: const<i32> (Optional)
Defaults to
-1
(last dimension).Axis to perform the operation.
- ascending: const<bool> (Optional)
Defaults to
False
, sort in descending order.True
to sort in ascending order.
- Attributes:
- T: fp16, fp32, int32
- Returns:
- tensor<*?, T>
Values of top/bottom
k
elements.
- tensor<*?, int32>
Indices of the top/bottom
k
elements along axis.
tensor_operation (iOS 16+)
- class coremltools.converters.mil.mil.ops.defs.iOS16.tensor_operation.fill_like(**kwargs)[source]
Returns a tensor with the same shape as the input tensor filled with a constant value.
- Parameters:
- ref_tensor: tensor<*?, T> (Required)
Input tensor.
- value: const<U> (Optional)
Default is
0.0
.Constant value to fill in.
- Attributes:
- T: fp16, fp32, int32, bool
- U: fp16, fp32, int32, bool
- Returns:
- tensor<*?, T>
Tensor with shape determined by the input tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS16.tensor_operation.topk(**kwargs)[source]
A version of
topk
for iOS 16+. This section documents the differences. The following are additional parameters for the iOS 16+ version. For the rest of the documentation, see the iOS 15 version of topk.- Parameters:
- sort: const<bool> (Optional)
Defaults to
True
.If
True
,top-k
elements are themselves sorted. Otherwise, no particular ordering is guaranteed.
- return_indices: const<bool> (Optional)
Defaults to
True
.If
True
, returns both values and indices. Otherwise, returns only thetop-k
values.
- Attributes:
- T: fp32, int32
- Returns:
- tensor<*?, T>
Values of top/bottom
k
elements.
- tensor<*?, int32>
Only returned when
return_indices = True
Indices of the top/bottom
k
elements along axis.
tensor_operation (iOS 17+)
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_operation.non_maximum_suppression(**kwargs)[source]
Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union (IoU).
NMS iteratively removes lower-scoring boxes which have an IoU greater than
iou_threshold
with another (higher-scoring) box.The major differences between this version and the iOS 15
non_maximum_suppression
are as follows:The input parameter
score_threshold
has been removed.The inputs
boxes
andscores
are ordered with number of boxes in the last dimension.The fourth output containing number of boxes for each batch has been removed.
- Parameters:
- boxes: tensor<[n, 4, B], T> (Required)
Box coordinates on which to perform NMS. The coordinates are expected in
CENTER_SIZE_WIDTH_FIRST
format(x, y, width, height)
, in which(x, y)
is the center.
- scores: tensor<[n, K, B], T> (Required)
Scores for each one of the boxes.
K
is the number of classes.
- iou_threshold: const<T> (Required)
The intersection over union (IoU) threshold over which boxes are suppressed. NMS remove all overlapping boxes with
IoU > iou_threshold
.
- max_boxes: const<i32> (Required)
Maximum number of boxes to select. If the number of surviving boxes are less, the output is padded up to this number.
- per_class_suppression: const<bool> (Optional)
Defaults to
False
.If
True
, suppression is performed independently within boxes of each class.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n, 4, max_boxes], T>
Coordinates of selected boxes.
- tensor<[n, K, max_boxes], T>
Scores of selected boxes.
- tensor<[n, max_boxes], i32>
Indices of selected boxes.
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_operation.topk(**kwargs)[source]
A version of
topk
for iOS 17+. The differences between this version and the iOS 16topk
are:- New data type support. The newly added data types are:
int8, uint8, int16, unint16 for
x
and output.int8, int16 for
k
.
Validation restrictions on the optional
indices
output must be either uint16 or int32.A new input parameter
output_indices_dtype
has been added to set the dtype of outputindices
.
- Parameters:
- x: <*?, T> (Required)
Input tensor.
- k: const<K> (Optional)
Defaults to
1
.Number of values/indices to be computed along each axis.
Set to
-1
to select all elements.
- axis: const<i32> (Optional)
Defaults to
-1
(last dimension).Axis to perform the operation.
- ascending: const<bool> (Optional)
Defaults to
False
, sort in descending order.True
to sort in ascending order.
- sort: const<bool> (Optional)
Defaults to
True
.If
True
,top-k
elements are themselves sorted. Otherwise, no particular ordering is guaranteed.
- return_indices: const<bool> (Optional)
Defaults to
True
.If
True
, returns both values and indices. Otherwise, returns only thetop-k
values.
- output_indices_dtype: const<str> (Optional, default=”int32”)
It can only be set when
return_indices
isTrue
.This parameter can take
"int32"
or"uint16"
as values.
- Attributes:
- T: fp16, fp32, int8, int16, int32, uint8, uint16
- K: int8, int16, int32
- Returns:
- tensor<*?, T>
Values of top/bottom
k
elements.
- tensor<*?, U>
Only returned when
return_indices = True
Indices of the top/bottom
k
elements along axis.U is int32 or uint16 determined by
output_indices_dtype
(int32 by default).
tensor_transformation (iOS 15)
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.batch_to_space(**kwargs)[source]
Rearrange elements in a tensor from batch into spatial dimensions.
- Parameters:
- x: tensor<[n, C, H, W], T> (Required)
Input tensor must have rank
4
.The first and the second dimension are batch, channel; respectively.
The remaining dimensions
(H, W)
are treated as “spatial dimensions”.
- block_shape: const tensor<[2], i32> (Required)
The length of the
block_shape
must be2
.It defines the shapes of the block in which the spatial dimensions are multiplied.
- crops: const tensor<[2, 2], i32> (Required)
It must have shape
(2, 2)
.It defines the amount to crop from each spatial dimension.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[new_n, C, new_H, new_W], T>
new_n = n / (block_shape[0] * block_shape[1])
new_H = (H * block_shape[0]) - paddings[0][0] - padding[0][1]
new_W = (W * block_shape[1]) - paddings[1][0] - padding[1][1]
The output has the same rank as the input.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.depth_to_space(**kwargs)[source]
Rearrange elements in a tensor from depth (channel) into spatial dimensions.
- Parameters:
- x: tensor<[n, C, H, W], T> (Required)
Input tensor of rank
4
.
- block_size: const i32 (Required)
The size of the spatial block. Must be greater than
1
and divisible by channel dimensionC
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n, C / block_size^2, H x block_size, W x block_size], T>
Where
b
is the block size.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.expand_dims(**kwargs)[source]
Insert a single-dimension in a 1-D or higher tensor at each axis in axes.
- Parameters:
- x: tensor<*?, T> (Required)
Scalar or tensor.
- axes: const tensor<[K], i32> Required
K
is the number of dimensions expanded.Insert single dimension at dimension index at each axes.
Negative value to index from the end.
-d-1 <= axis <= d
whered
is the rank ofx
.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*(rank(x)+K), T>
Same type as the input
x
with rankrank(x)+K
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.pixel_shuffle(**kwargs)[source]
Rearrange elements in a tensor from depth (channel) into spatial dimensions. Equivalent to PyTorch’s
PixelShuffle
.- Parameters:
- x: tensor<[n, C x f^2, H, W], T> (Required)
Input tensor of rank
4
.
- upscale_factor: const<i32>
Factor to increase spatial resolution by.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n, C, H x f, W x f], T>
Where
f
is the upscale factor.
References
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.reshape(**kwargs)[source]
Return a tensor that has the same values as
x
with shapeshape
.shape
must have the same volume (number of elements) asx
.- Parameters:
- x: tensor<*?, T> (Required)
An n-D tensor or a scalar.
If
x
is fixed rank (and possibly contains symbolic dimension), shape may contain elements that are not positive integers (see below).If
x
is variadic rank, shape can only contain positive integers.
- shape: tensor<[K], i32> (Required)
A 1-D tensor, with elements from the following:
Positive integers.
Symbols: All but one symbol in shape must be present in
x.shape
. The new symbol that is not present inx.shape
represent a dimension such that the total size remains constant. Symbol is illegal ifx
is variadic rank.-1
:-1
introduces a new symbol (see Symbols above). Therefore,-1
is allowed if all symbols in the shape appear inx.shape
.-1
is illegal ifx
is variadic rank.0
: IfK == rank(x)
then0
means inheriting from the corresponding dimension inx.shape
.0
is illegal ifx
is variadic rank.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*?, T>
Tensor with shape determined by the input shape.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.reverse(**kwargs)[source]
Reverse the order of the input tensor
x
along specifiedaxes
(dimensions).- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- axes: const<D, i32> (Optional)
Dimension(s) to reverse. Each axis must be in the range
[-rank(x), rank(x))
.Defaults to None (reverse on all dimensions).
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*?, T>
Same type and shape as the input tensor.
References
See tf.reverse and TORCH.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.reverse_sequence(**kwargs)[source]
Reverse variable length slices for specified axes / dimensions of the input tensor. This op first slices input tensor along the
batch_axis
dimension, then partially reverses the elements along theseq_axis
for the firstlengths[i]
elements.- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- lengths: tensor<L, i32> (Required)
1-dimensional tensor of length
x.shape[batch_axis]
specifying the length of the sequence to reverse.Values must be in range
[0, x.shape[seq_axis]]
.
- seq_axis: const<i32> (Optional)
The dimension to reverse.
Defaults to
0
.
- batch_axis: const<i32> (Optional)
Dimension for slicing.
Defaults to
0
.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*?, T>
Same type and shape as the input tensor.
References
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.slice_by_index(**kwargs)[source]
Method for numpy style indexing and slicing. With a tensor
x
, this method achieves the following:result = x[begin[0]: end[0]: stride[0], begin[1]: end[1]: stride[1], ...]
Note: This method does not support pure indexing. You would need to do a squeeze if indexing is intended.
- Parameters:
- x: tensor<*?, T> (Required)
Input tensor
- begin: tensor<[rank(x)], i32> (Required)
Starting index for the dimension of slicing.
- end: tensor<[rank(x)], i32> (Required)
Ending index for the dimension of slicing.
- stride: tensor<[rank(x)], i32> (Optional)
Default is all
1
.Stride for the dimension of slicing.
- begin_mask: tensor<[rank(x)], bool> (Optional)
Default to all
False
.If
begin_mask[i]==True
, ignoresbegin[i]
, and setbegin[i]
to0
.
- end_mask: tensor<[rank(x)], bool> (Optional)
Default to all
False
.If
end_mask[i]==True
, ignoresend[i]
, and setend[i]
tox.shape[i]
.
- squeeze_mask: tensor<[rank(x)], bool> (Optional)
Default to all
False
.If
squeeze_mask[i]==true
, ignoresend[i]
, and do the pure index atbegin[i]
.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*?, T>
Scalar or tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.slice_by_size(**kwargs)[source]
Slice input tensor starting from the given
begin
index and by the amount specified by thesize
input, for each dimension.- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- begin: tensor<[rank(x)], i32> (Required)
The begin index for slice.
- size: tensor<[rank(x)], i32> (Required)
The size that is to be sliced. If
size
is-1
, all the remaining elements starting with “begin” are sliced.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*?, T>
Scalar or tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.sliding_windows(**kwargs)[source]
Return a tensor containing all windows of
size
, separated by stride along the givenaxis
.- Parameters:
- x: tensor<[*d0, d_axis, *dn], T>
Input tensor.
- axis: const<i32>
Axis to perform the operation.
- size: const<i32>
Number of elements in the sliding window.
- stride: const<i32> Optional
Default to
1
.The stride of the input elements in the sliding window.
- Attributes:
- T: fp16, fp32, int32
- Returns:
- tensor<[*d0, d_axis - size // stride + 1, size, *dn], T>
The output will be a tensor of rank
N+1
whereN
is the input tensor rank.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.space_to_batch(**kwargs)[source]
Rearrange elements in a tensor from spatial into batch dimensions.
- Parameters:
- x: tensor<[n, C, H, W], T> (Required)
Input tensor must have rank
4
.The first and the second dimension are batch, channel; respectively.
The remaining dimensions
(H, W)
are treated as “spatial dimensions”.
- block_shape: const tensor<[2], i32> (Required)
The length of the
block_shape
must be2
.It defines the shapes of the block in which the spatial dimensions are divided.
- paddings: const tensor<[2, 2], i32> (Required)
It must have shape
(2, 2)
.It defines the padding for each spatial dimension.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[new_n, C, new_H, new_W], T>
new_n = n * block_shape[0] * block_shape[1]
new_H = (H + paddings[0][0] + padding[0][1])/block_shape[0]
new_W = (W + paddings[1][0] + padding[1][1])/block_shape[1]
The output has the same rank as the input.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.space_to_depth(**kwargs)[source]
Rearrange elements in a tensor from spatial into depth (channel) dimension.
- Parameters:
- x: tensor<[n, C, H, W], T> (Required)
Input tensor of rank
4
.
- block_size: const<i32> (Required)
The size of the spatial block. Must be greater than
1
and divisible by spatial dimensionsH, W
.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n, C x block_size^2, H / block_size, W / block_size], T>
Where
b
is the block size.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.squeeze(**kwargs)[source]
Remove single-dimension dimensions in a 1-D or higher tensor.
- Parameters:
- x: tensor<*?,T> (Required)
Must be at least 1-D.
- axes: const<K,i32> (Optional)
Axes to squeeze out.
The behaviour of squeezing non-single dimensions follow PyTorch instead of NumPy, where it ignores non-single dimensions instead of erroring out. More specifically, if x has shape (2, 3, 4) and axes is [0, 1], the output will be a tensor with shape (2, 3, 4).
Default to remove all single-dimensions.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*(rank(x)-K),T>
Tensor with same type as input
x
and rankrank(x)-K
.
- class coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.transpose(**kwargs)[source]
Permute tensor
x
dimensions according toperm
.- Parameters:
- x: tensor<*?, T> (Required)
Must be at least 1-D.
x
may have a symbolic shape.
- perm: const<[rank(x)], i32> (Required)
Permutation order. -rank(x) <= perm[I] < rank(x) for all perm entries.
- Attributes:
- T: fp16, fp32, i32, bool
- Returns:
- tensor<*?,T>
Tensor with same rank and type as
x
.
References
tensor_transformation (iOS 16+)
- class coremltools.converters.mil.mil.ops.defs.iOS16.tensor_transformation.pixel_unshuffle(**kwargs)[source]
Rearrange elements in a tensor from spatial dimensions into depth (channel). It is basically the inverse operation of
pixel_shuffle
. Equivalent to PyTorch PixelUnshuffle.- Parameters:
- x: tensor<[n, C, H / f , W / f], T> (Required)
Input tensor of rank
4
.
- downscale_factor: const<i32>
Factor to decrease spatial resolution by.
- Attributes:
- T: fp16, fp32
- Returns:
- tensor<[n, C * f^2, H, W], T>
In which
f
is the downscale factor.
References
- class coremltools.converters.mil.mil.ops.defs.iOS16.tensor_transformation.reshape_like(**kwargs)[source]
Reshape a tensor to an output shape specified by some or all dimensions of a tuple of reference tensors
ref_tensors
.- Parameters:
- x: tensor<*?, T> (Required)
The input tensor to be reshaped.
- ref_tensors: Tuple[tensor<*?, R>] (Required)
A tuple of tensors that define the output shape.
- begins: Tuple[const<int32>] (Required)
A tuple of integers specifying the begin index into the shape vector of the corresponding
ref_tensor
.
- ends: Tuple[const<int32>] (Required)
A tuple of integers specifying the end index into the shape vector of the corresponding
ref_tensor
.
- end_masks: Tuple[const<bool>] (Required)
If
True
, select all axes from the begin index until the end of the correspondingref_tensor
, as inref_tensors[i].shape[begins[i]:]
.
- Attributes:
- T: fp16, fp32, i32, bool
- R: fp16, fp32, i32, bool
- Returns:
- tensor<*?, T>
Same type as input tensor
x
.Output shape is computed by
ref_tensors
,begins
,ends
, andend_masks
.
Notes
The output shape is computed as follows:
output_shape = [] num_of_refs = len(begins) for i in range(num_of_refs): if end_masks[i]: output_shape.append(ref_tensor_i.shape[begins[i]:]) else: output_shape.append(ref_tensor_i.shape[begins[i]:ends[i]]) output_shape = np.concat(output_shape, axis=0)
The following is an example:
ref_tensors=[tensor[2, 3, 4], tensor[1, 5, 6]] begins=[0, 1] ends=[2, 0] end_masks=[False, True]
The output shape would be
(2, 3, 5, 6)
.
tensor_transformation (iOS 17+)
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_transformation.expand_dims(**kwargs)[source]
Insert a single-dimension in a 1-D or higher tensor at each axis in axes.
The major difference between this version and the iOS 15
expand_dims
is that inputx
supports more data types: int8, uint8, int16, uint16.- Parameters:
- x: tensor<*?, T> (Required)
Scalar or tensor.
- axes: const tensor<[K], int32> Required
K
is the number of dimensions expanded.Insert single dimension at dimension index at each axes.
Negative value to index from the end.
-d-1 <= axis <= d
whered
is the rank ofx
.
- Attributes:
- T: fp16, fp32, int8, int16, int32, uint8, uint16, bool
- Returns:
- tensor<*(rank(x)+K), T>
Same type as the input
x
with rankrank(x)+K
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_transformation.reshape(**kwargs)[source]
Return a tensor that has the same values as
x
with shapeshape
.shape
must have the same volume (number of elements) asx
.The major differences between this version and the iOS 15
reshape
are as follows:When the
shape
contains0
, the restriction aboutK == rank(x)
is no longer enforced. Each0
inshape
will match the corresponding dimension inx.shape
, counting from the rightmost element. Soshape[i]
matchesinput[j]
iflength(shape)-i == rank(input)-j
. If a0
is out of range, assign1
(equivalent toexpand_dims
forx.shape
).More specifically, when
x.shape
is[2, 50]
andshape
is[1, 0, -1, 0]
, it will error out in iOS 15 or iOS 16 becausex
has rank2
while thelen
ofshape
is4
. In iOS 17, the result will haveshape
[1, 1, 2, 50]
, because the rightmost0
will be changed to the rightmost dim ofx.shape
, which is50
. There is no other0
that has a corresponding dim inx.shape
, so it is set as1
. Finally, the-1
is calculated based on knowing dimensions that produce2
.Support more data types, including int8, uint8, int16, uint16 for
x
and int8, int16 forshape
.
- Parameters:
- x: tensor<*?, T> (Required)
An
n-D
tensor or a scalar.If
x
has a fixed rank (and possibly contains symbolic dimension),shape
may contain elements that are not positive integers (see below).If
x
has a variadic rank,shape
can only contain positive integers.
- shape: tensor<[K], U> (Required)
A 1-D tensor, with elements from the following:
Positive integers.
Symbols: All but one symbol in
shape
must be present inx.shape
. The new symbol that is not present inx.shape
represents a dimension such that the total size remains constant. Symbol is illegal ifx
has a variadic rank.-1
:-1
introduces a new symbol (see Symbols). Therefore,-1
is allowed if all symbols in theshape
appear inx.shape
.-1
is illegal ifx
has a variadic rank.0
: It will match the corresponding dimension inx.shape
. See the previous description of different behaviors with iOS 17.
- Attributes:
- T: fp16, fp32, int8, uint8, int16, uint16, int32, bool
- U: int8, int16, int32
- Returns:
- tensor<*?, T>
Tensor with shape determined by the input shape.
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_transformation.reshape_like(**kwargs)[source]
Reshape a tensor to an output shape specified by some or all dimensions of a tuple of reference tensors
ref_tensors
.The major difference between this version and the iOS 15
reshape_like
is that inputx
andref_tensors
supports more data types: int8, uint8, int16, uint16.- Parameters:
- x: tensor<*?, T> (Required)
The input tensor to be reshaped.
- ref_tensors: Tuple[tensor<*?, R>] (Required)
A tuple of tensors that define the output shape.
- begins: Tuple[const<int32>] (Required)
A tuple of integers specifying the begin index into the shape vector of the corresponding
ref_tensor
.
- ends: Tuple[const<int32>] (Required)
A tuple of integers specifying the end index into the shape vector of the corresponding
ref_tensor
.
- end_masks: Tuple[const<bool>] (Required)
If
True
, select all axes from the begin index until the end of the correspondingref_tensor
, as inref_tensors[i].shape[begins[i]:]
.
- Attributes:
- T: fp16, fp32, int8, int16, int32, uint8, uint16, bool
- R: fp16, fp32, int8, int16, int32, uint8, uint16, bool
- Returns:
- tensor<*?, T>
Same type as input tensor
x
.Output shape is computed by
ref_tensors
,begins
,ends
, andend_masks
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_transformation.reverse(**kwargs)[source]
Reverse the order of the input tensor
x
along specifiedaxes
(dimensions).The major difference between this version and the iOS 15
reverse
is that inputx
supports more data types: int8, uint8, int16, uint16.- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- axes: const<D, int32> (Optional)
Dimension(s) to reverse. Each axis must be in the range
[-rank(x), rank(x))
.Defaults to None (reverse on all dimensions).
- Attributes:
- T: fp16, fp32, int8, int16, int32, uint8, uint16, bool
- Returns:
- tensor<*?, T>
Same type and shape as the input tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_transformation.reverse_sequence(**kwargs)[source]
Reverse variable length slices for specified axes / dimensions of the input tensor. This op first slices input tensor along the
batch_axis
dimension, then partially reverses the elements along theseq_axis
for the firstlengths[i]
elements.The major difference between this version and the iOS 15
reverse_sequence
is that input supports more data types: -x
additionally supports int8, uint8, int16, uint16 -lengths
additionally supports int8, int16- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- lengths: tensor<L, U> (Required)
1-dimensional tensor of length
x.shape[batch_axis]
specifying the length of the sequence to reverse.Values must be in range
[0, x.shape[seq_axis]]
.
- seq_axis: const<int32> (Optional)
The dimension to reverse.
Defaults to
0
.
- batch_axis: const<int32> (Optional)
Dimension for slicing.
Defaults to
0
.
- Attributes:
- T: fp16, fp32, int8, int16, int32, uint8, uint16, bool
- U: int8, int16, int32
- Returns:
- tensor<*?, T>
Same type and shape as the input tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_transformation.slice_by_index(**kwargs)[source]
Method for numpy style indexing and slicing. With a tensor
x
, this method achieves the following:result = x[begin[0]: end[0]: stride[0], begin[1]: end[1]: stride[1], ...]
The differences between this version and the iOS 15
slice_by_index
is that additional data types are supported forx
,begin
,end
, andstride
. See Parameters and Attributes sections for details.- Parameters:
- x: tensor<*?, T> (Required)
Input tensor
- begin: tensor<[rank(x)], U> (Required)
Starting index for the dimension of slicing.
- end: tensor<[rank(x)], U> (Required)
Ending index for the dimension of slicing.
- stride: tensor<[rank(x)], U> (Optional)
Default is all
1
.Stride for the dimension of slicing.
- begin_mask: tensor<[rank(x)], bool> (Optional)
Default to all
False
.If
begin_mask[i]==True
, ignoresbegin[i]
, and setbegin[i]
to0
.
- end_mask: tensor<[rank(x)], bool> (Optional)
Default to all
False
.If
end_mask[i]==True
, ignoresend[i]
, and setend[i]
tox.shape[i]
.
- squeeze_mask: tensor<[rank(x)], bool> (Optional)
Default to all
False
.If
squeeze_mask[i]==True
, ignoresend[i]
, and do the pure index atbegin[i]
.
- Attributes:
- T: bool, fp16, fp32, int8, int16, int32, uint8, uint16
- U: int8, int16, int32
- Returns:
- tensor<*?, T>
Scalar or tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_transformation.slice_by_size(**kwargs)[source]
Slice input tensor starting from the given
begin
index and by the amount specified by thesize
input, for each dimension.The differences between this version and the iOS 15
slice_by_size
is that additional data types are supported forx
,begin
, andsize
. See Parameters and Attributes sections for details.- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- begin: tensor<[rank(x)], U> Required
The begin index for slice.
- size: tensor<[rank(x)], U> Required
The size that is to be sliced. If
size
is-1
, all the remaining elements starting with “begin” are sliced.
- Attributes:
- T: bool, fp16, fp32, int8, int16, int32, uint8, uint16
- U: int8, int16, int32
- Returns:
- tensor<*?, T>
Scalar or tensor.
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_transformation.sliding_windows(**kwargs)[source]
Return a tensor containing all windows of
size
, separated by stride along the givenaxis
.The major difference between this version and the iOS 15
sliding_windows
is that inputx
supports more data types: int8, uint8, int16, uint16.- Parameters:
- x: tensor<[*d0, d_axis, *dn], T>
Input tensor.
- axis: const<int32>
Axis to perform the operation.
- size: const<int32>
Number of elements in the sliding window.
- stride: const<int32> Optional
Default to
1
.The stride of the input elements in the sliding window.
- Attributes:
- T: fp16, fp32, int8, int16, int32, uint8, uint16, bool
- Returns:
- tensor<[*d0, d_axis - size // stride + 1, size, *dn], T>
The output will be a tensor of rank
N+1
whereN
is the input tensor rank.
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_transformation.squeeze(**kwargs)[source]
Remove single-dimension dimensions in a 1-D or higher tensor.
The major difference between this version and the iOS 15
squeeze
is that inputx
supports more data types: int8, uint8, int16, uint16.- Parameters:
- x: tensor<*?,T> (Required)
Must be at least 1-D.
- axes: const<K,int32> (Optional)
Axes to squeeze out.
Default to remove all single-dimensions.
- Attributes:
- T: fp16, fp32, int8, int16, int32, uint8, uint16, bool
- Returns:
- tensor<*(rank(x)-K),T>
Tensor with same type as input
x
and rankrank(x)-K
.
- class coremltools.converters.mil.mil.ops.defs.iOS17.tensor_transformation.transpose(**kwargs)[source]
Permute tensor
x
dimensions according toperm
.The major difference between this version and the iOS 15
transpose
is that inputx
supports more data types: int8, uint8, int16, uint16.- Parameters:
- x: tensor<*?, T> (Required)
Must be at least 1-D.
x
may have a symbolic shape.
- perm: const<[rank(x)], i32> (Required)
Permutation order. -rank(x) <= perm[I] < rank(x) for all perm entries.
- Attributes:
- T: fp16, fp32, int8, int16, int32, uint8, uint16, bool
- Returns:
- tensor<*?,T>
Tensor with same rank and type as
x
.
tensor_transformation (iOS 18+)
- class coremltools.converters.mil.mil.ops.defs.iOS18.tensor_transformation.slice_update(**kwargs)[source]
Update a custom slice of a source tensor with another tensor of the same shape, as dictated by the slice.
For example, if you have a tensor
x
, this method produces the following:x[begin[0]: end[0]: stride[0], begin[1]: end[1]: stride[1], ...] = value
The arguments defining the slice (
begin
,end
,stride
,masks
, and so on) should be treated the same way as iOS15slice_by_index
.- Parameters:
- x: tensor<*?, T> (Required)
Input tensor.
- update: tensor<*K, T> (Required)
Value tensor to be inserted.
The shape of the update tensor must match the slicing result of the input data.
rank-0 update is not supported.
- begin: tensor<[rank<x>], U> (Required)
Starting index for the dimension of slicing.
- end: tensor<[rank(x)], U> (Required)
Ending index for the dimension of slicing.
- stride: tensor<[rank(x)], U> (Optional)
Default as all
1
.Stride for the dimension of slicing.
- begin_mask: tensor<[rank(x)], bool> (Optional)
Default to all
False
.If
begin_mask[i]==True
, neglectbegin[i]
, and setbegin[i]
to0
.
- end_mask: tensor<[rank(x)], bool> (Optional)
Default to all
False
.If
end_mask[i]==True
, neglectend[i]
, and setend[i]
tox.shape[i]
.
- squeeze_mask: tensor<[rank(x)], bool> (Optional)
Default to all
False
.If
squeeze_mask[i]==True
, neglectend[i]
, and do the pure index atbegin[i]
.
- Attributes:
- T: fp16, fp32, int8, int16, int32, uint8, uint16, bool
- U: int8, int16, int32
- Returns:
- tensor<*?, T>
Scalar or tensor.
transformers (iOS 18+)
- class coremltools.converters.mil.mil.ops.defs.iOS18.transformers.scaled_dot_product_attention(**kwargs)[source]
Source: PyTorch scaled dot product attention. Computes the scaled dot product attention on query, key, and value tensors, using an optional attention mask if passed. In PyTorch, this is equivalent to:
attn_mask = attn_mask.masked_fill(not attn_mask, -float('inf')) if attn_mask.dtype==torch.bool else attn_mask attn_weight = torch.softmax((Q @ K.transpose(-2, -1) / math.sqrt(Q.size(-1))) + attn_mask, dim=-1) return attn_weight @ V
- Shape key:
B
= Batch sizeS
= Source sequence lengthL
= Target sequence lengthE
= Query/Key embedding dimensionEV
= Value embedding dimension
Numerical values can differ due to floating point fusion/accumulation between backends. Note: We currently do not support the
dropout_p
andis_causal
.Mask can either be bool or float matching query, key, or value. For bool, it indicates whether the element should take part in the attention. Floats are added to the attention score. Mask shape must be broadcastable to
[B, \*?, L, S]
.- Parameters:
- query: tensor<[B, *?, L, E], T> (Required)
- key: tensor<[B, *?, S, E], T> (Required)
- value: tensor<[B, *?, S, EV], T> (Required)
- attn_mask: tensor<[*?, S], M> (Optional)
- Attributes:
- T: fp16, fp32
- M: bool, fp16, fp32
- Returns:
- tensor<[B, *?, L, EV], T>