Source code for coremltools.models.neural_network.builder

# Copyright (c) 2017, Apple Inc. All rights reserved.
#
# Use of this source code is governed by a BSD-3-clause license that can be
# found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause

"""
Neural network builder class to construct Core ML models.
"""
from math import floor as _math_floor

import numpy as _np

from ... import (_MINIMUM_NDARRAY_SPEC_VERSION,
                 _MINIMUM_UPDATABLE_SPEC_VERSION,
                 _SPECIFICATION_VERSION_IOS_14)
from ... import SPECIFICATION_VERSION as _SPECIFICATION_VERSION
from ...proto import FeatureTypes_pb2 as _FeatureTypes_pb2
from ...proto import Model_pb2 as _Model_pb2
from ...proto import NeuralNetwork_pb2 as _NeuralNetwork_pb2
from .. import datatypes
from .._interface_management import (set_training_features,
                                     set_transform_interface_params)
from .quantization_utils import (_convert_array_to_nbit_quantized_bytes,
                                 _unpack_to_bytes)
from .spec_inspection_utils import _summarize_network_layer_info
from .update_optimizer_utils import AdamParams, SgdParams

_SUPPORTED_UPDATABLE_LAYERS = ["innerProduct", "convolution"]


def _set_recurrent_activation(param, activation):
    if isinstance(activation, bytes):
        activation = activation.decode("utf8")

    activation = (
        activation.upper() if isinstance(activation, str) else activation
    )

    if activation == "SIGMOID":
        param.sigmoid.MergeFromString(b"")
    elif activation == "TANH":
        param.tanh.MergeFromString(b"")
    elif activation == "LINEAR":
        param.linear.MergeFromString(b"")
    elif activation == "SIGMOID_HARD" or activation == "HARD_SIGMOID":
        # The standard name is "hard_sigmoid", but in nn there are still usages of "sigmoid_hard".
        param.sigmoidHard.MergeFromString(b"")
    elif activation == "SCALED_TANH":
        param.scaledTanh.MergeFromString(b"")
    elif activation == "RELU":
        param.ReLU.MergeFromString(b"")
    else:
        raise TypeError(
            "Unsupported activation type with Recurrent layer: %s." % activation
        )


def _verify_quantization_arguments(weight=bytes(), output_channels=1, **kwargs):
    quantization_type = kwargs.get("quantization_type", "").lower()
    nbits = kwargs.get("nbits", 8)
    quant_scale = kwargs.get("quant_scale", None)
    quant_bias = kwargs.get("quant_bias", None)
    quant_lut = kwargs.get("quant_lut", None)
    int_8_dynamic_quantize = kwargs.get("int_8_dynamic_quantize", False)

    if int_8_dynamic_quantize and nbits != 8:
        raise ValueError("nbits must be 8 when 'int_8_dynamic_quantize' is true ")

    if int_8_dynamic_quantize and quant_bias is not None:
        raise ValueError(
            "quant_bias must be empty when 'int_8_dynamic_quantize' is true "
        )

    if int_8_dynamic_quantize and quant_scale.size != 1:
        raise ValueError(
            "quant_scale must be of size 1 when 'int_8_dynamic_quantize' is true "
        )

    if not isinstance(weight, bytes):
        raise ValueError("Weight must be of type bytes() for quantization")

    if quantization_type == "linear":
        if not int_8_dynamic_quantize:
            if quant_scale is None or quant_bias is None:
                raise ValueError(
                    "quant_scale and quant_bias parameters must be provided for linear quantization type"
                )
        if not _np.isscalar(quant_scale) and (len(quant_scale) != 1 and len(quant_scale) != output_channels):
            raise ValueError(
                "quant_scale should be of type float or an array of length outputChannels"
            )
        if not int_8_dynamic_quantize:
            if not _np.isscalar(quant_scale) and len(quant_bias) != 1 and len(quant_bias) != output_channels:
                raise ValueError(
                    "quant_bias should be of type float or an array of length outputChannels"
                )
    elif quantization_type == "lut":
        if quant_lut is None:
            raise ValueError(
                "quant_lut must be provided for look up table quantization type"
            )
        if len(quant_lut) != 2 ** nbits:
            raise ValueError("quant_lut must be an array of length 2^nbits")
    else:
        raise ValueError("quantization_type must be either linear or lut")

    if quantization_type == "linear" or "lut":
        if nbits > 8 or nbits < 1:
            raise ValueError("nbits must be between 1 and 8")


def _fill_quantized_weights(weights_message=None, W=bytes(), use_int_8=False, **kwargs):
    if use_int_8:
        weights_message.int8RawValue = bytes()
        weights_message.int8RawValue += W
    else:
        weights_message.rawValue = bytes()
        weights_message.rawValue += W
    nbits = kwargs.get("nbits", 8)
    weights_message.quantization.numberOfBits = nbits
    quantization_type = kwargs.get("quantization_type", "").lower()
    if quantization_type == "linear":
        quant_scale = kwargs.get("quant_scale", [1.0])
        quant_bias = kwargs.get("quant_bias", [0.0])
        weights_message.quantization.linearQuantization.scale.extend(quant_scale)
        if not use_int_8:
            weights_message.quantization.linearQuantization.bias.extend(quant_bias)
    else:
        quant_lut = kwargs.get("quant_lut", [0.0, 1.0])
        weights_message.quantization.lookupTableQuantization.floatValue.extend(
            quant_lut
        )


def _get_nn_spec(spec):
    if spec.HasField("neuralNetworkClassifier"):
        return spec.neuralNetworkClassifier
    elif spec.HasField("neuralNetworkRegressor"):
        return spec.neuralNetworkRegressor
    elif spec.HasField("neuralNetwork"):
        return spec.neuralNetwork
    else:
        return None


def _get_lstm_weight_fields(lstm_wp):
    """
    Get LSTM weight fields.
    lstm_wp: _NeuralNetwork_pb2.LSTMWeightParams
    """
    return [
        lstm_wp.inputGateWeightMatrix,
        lstm_wp.forgetGateWeightMatrix,
        lstm_wp.blockInputWeightMatrix,
        lstm_wp.outputGateWeightMatrix,
        lstm_wp.inputGateRecursionMatrix,
        lstm_wp.forgetGateRecursionMatrix,
        lstm_wp.blockInputRecursionMatrix,
        lstm_wp.outputGateRecursionMatrix,
        lstm_wp.inputGateBiasVector,
        lstm_wp.forgetGateBiasVector,
        lstm_wp.blockInputBiasVector,
        lstm_wp.outputGateBiasVector,
        lstm_wp.inputGatePeepholeVector,
        lstm_wp.forgetGatePeepholeVector,
        lstm_wp.outputGatePeepholeVector,
    ]


def _fill_tensor_fields(tensor_field, ranks=None, shapes=None):
    """
    Fill the tensor fields.
    ranks - ``NONE`` or a list of integers with the same length of number of inputs/outputs
    shapes - ``NONE`` or a list of shapes the same length of number of inputs/outputs. Each shape is a list or tuple
    """
    if ranks is None and shapes is None:
        return

    if ranks is None and shapes is not None:
        ranks = [len(shape) for shape in shapes]

    # Fill ranks only
    for rank in ranks:
        if rank is None:
            continue

        if not _np.issubclass_(type(rank), (int, _np.integer)):
            rank = -1  # Variable rank set to -1

        field = tensor_field.add()
        field.rank = rank

    if ranks is not None and shapes is not None:
        if len(ranks) != len(shapes):
            raise ValueError("Number of rank and shape of tensor field does not match.")

        for i in range(0, len(ranks)):
            shape = shapes[i]
            rank = ranks[i]

            # Ignore incomplete info
            if shape is None or rank is None:
                continue

            # Raise error on inconsistent input
            if rank != len(shape):
                raise ValueError("Rank and shape does not match")

            # Add the shape to the proto
            is_symbolic = False
            for s in shape:
                if not _np.issubclass_(type(s), (int, _np.integer)):
                    s = -1  # Symbolic shape set to -1
                tensor_field[i].dimValue.append(s)


[docs]class NeuralNetworkBuilder: """ Neural network builder class to construct Core ML models. The NeuralNetworkBuilder constructs a Core ML neural network specification layer by layer. The layers should be added in such an order that the inputs to each layer (referred to as blobs of each layer) have been previously defined. The builder can also set preprocessing steps to handle specialized input formats (such as images), and set class labels for neural network classifiers. Refer to the protobuf messages in the specification (NeuralNetwork.proto) for more details. Examples -------- .. sourcecode:: python import numpy as np from coremltools.models import datatypes from coremltools.models.neural_network import NeuralNetworkBuilder from coremltools.models.utils import save_spec # Create a neural network binary classifier that classifies # 3-dimensional data points # Specify input and output dimensions input_dim = (3,) output_dim = (2,) # Specify input and output features input_features = [("data", datatypes.Array(*input_dim))] output_features = [("probs", datatypes.Array(*output_dim))] # Create random weights and bias weights = np.random.rand(2, 3) bias = np.random.rand(2) # Build a simple neural network with 1 inner product layer builder = NeuralNetworkBuilder(input_features, output_features) builder.add_inner_product( name="ip_layer", W=weights, b=bias, input_channels=3, output_channels=2, has_bias=True, input_name="data", output_name="probs", ) # save the spec by the builder save_spec(builder.spec, "network.mlmodel") """
[docs] def __init__( self, input_features=None, output_features=None, mode=None, spec=None, nn_spec=None, disable_rank5_shape_mapping=False, training_features=None, use_float_arraytype=False, ): """ Construct a NeuralNetworkBuilder object to build an MLModel specification with a model interface, or a NeuralNetwork protobuf message, either from scratch or using an existing specification. Parameters ---------- input_features: [(str, datatypes.Array)] or None List of input feature of the network. Each feature is a ``(name, array)`` tuple, where ``name`` is the name of the feature, and ``array`` is a ``datatype.Array`` object describing the feature type. * When ``spec`` is ``None`` (building from scratch), ``input_features`` must not be ``None``. output_features: [(str, datatypes.Array or None)] or None List of output feature of the network. Each feature is a ``(name, array)`` tuple, where ``name`` is the name of the feature, and ``array`` is a ``datatypes.Array`` object describing the feature type. * The ``array`` can be ``None`` if not known. * When ``spec`` is ``None`` (building from scratch), ``output_features`` must not be ``None``. mode: str ('classifier', 'regressor' or None) Mode (one of ``'classifier'``, ``'regressor'``, or ``None``). When ``mode = 'classifier'``, a NeuralNetworkClassifier spec will be constructed. When ``mode = 'regressor'``, a NeuralNetworkRegressor spec will be constructed. disable_rank5_shape_mapping: bool Only applicable for neural networks. If True, inputs are no longer forced to map to rank 5 tensors (rank is equal to the length of the shape of the tensor). Instead, for multi-array inputs ``"EXACT_ARRAY_MAPPING"`` mapping is used, whereas for image inputs ``"RANK4_IMAGE_MAPPING"`` is used. For details, see description of enums ``NeuralNetworkMultiArrayShapeMapping`` and ``NeuralNetworkImageShapeMapping`` in NeuralNetwork.proto. When ``spec`` is not ``None``, this argument will be ignored. spec: None or coremltools.proto.Model_pb2 If ``None``, a new MLModel spec will be created by the builder with input and output features. Otherwise, the builder will continue to build on ``spec``. This is useful when the MLModel is built incrementally. nn_spec: None or coremltools.proto.NeuralNetwork_pb2 If ``None``, a new, empty NeuralNetwork proto will be created for spec. If ``nn_spec`` is not ``None`` and ``spec`` is ``None``, the builder will build a NeuralNetwork spec without wrapping it within an MLModel. This is useful to create nested NeuralNetworks for models with control flow operations. use_float_arraytype: bool If true, the datatype of input/output multiarrays is set to Float32 instead of double. Examples -------- .. sourcecode:: python # Construct a builder that builds a neural network classifier with a 299 x 299 x 3 # dimensional input and 1000 dimensional output input_features = [("data", datatypes.Array((299, 299, 3)))] output_features = [("probs", datatypes.Array((1000,)))] builder = NeuralNetworkBuilder(input_features, output_features, mode="classifier") See Also -------- set_input, set_output, set_class_labels """ self.spec = spec self.nn_spec = nn_spec self._disable_rank5_shape_mapping = disable_rank5_shape_mapping self.layers = [] self.layer_specs = {} self.named_parameters = [] self.rank_dict = {} if self.spec is not None: # Existing spec if self.nn_spec is None: self.nn_spec = _get_nn_spec(self.spec) for layer_spec in self.nn_spec.layers: self.layers.append(layer_spec.name) self.layer_specs[layer_spec.name] = layer_spec else: # Both spec and nn_spec are not None raise ValueError( "Attempting to assign another NeuralNetwork Spec to an existing MLModel Spec" ) if input_features is None and output_features is None: return if ( self.spec is None and self.nn_spec is not None ): # Building nested Neural Network return # Set the interface params. if self.spec is None: self.spec = _Model_pb2.Model() self.spec.specificationVersion = _SPECIFICATION_VERSION if disable_rank5_shape_mapping: self.spec.specificationVersion = _MINIMUM_NDARRAY_SPEC_VERSION # When output_features in None, use some dummy sized type out_features_with_shape = [] for out_feature in output_features: feat_name, feat_type = out_feature if feat_type is None: out_features_with_shape.append((str(feat_name), datatypes.Array(1))) else: out_features_with_shape.append(out_feature) # Set interface inputs and outputs if len(self.spec.description.input) > 0: del self.spec.description.input[:] if len(self.spec.description.output) > 0: del self.spec.description.output[:] if use_float_arraytype: array_datatype = _Model_pb2.ArrayFeatureType.FLOAT32 else: array_datatype = _Model_pb2.ArrayFeatureType.DOUBLE self.spec = set_transform_interface_params( self.spec, input_features, out_features_with_shape, training_features=training_features, array_datatype=array_datatype, ) for input in input_features: self.rank_dict[input[0]] = len(input[1].dimensions) for idx, output_feature in enumerate(output_features): if output_features[idx][1] is None: self.spec.description.output[idx].type.multiArrayType.ClearField( "shape" ) if self.nn_spec is None: if mode == "classifier": nn_spec = self.spec.neuralNetworkClassifier elif mode == "regressor": nn_spec = self.spec.neuralNetworkRegressor else: nn_spec = self.spec.neuralNetwork self.nn_spec = nn_spec if disable_rank5_shape_mapping and self.nn_spec: self.nn_spec.arrayInputShapeMapping = _NeuralNetwork_pb2.NeuralNetworkMultiArrayShapeMapping.Value( "EXACT_ARRAY_MAPPING" ) self.nn_spec.imageInputShapeMapping = _NeuralNetwork_pb2.NeuralNetworkImageShapeMapping.Value( "RANK4_IMAGE_MAPPING" )
[docs] def set_input(self, input_names, input_dims): """ Set the inputs of the network spec. Parameters ---------- input_names: list of str The input names of the network. input_dims: [tuple] The input dimensions of the network. The ordering of ``input_dims`` is the same as ``input_names``. Examples -------- .. sourcecode:: python # Set the neural network spec inputs to be 3 dimensional vector data1 and # 4 dimensional vector data2. builder.set_input(input_names=["data1", "data2"], input_dims=[(3,), (4,)]) See Also -------- set_output, set_class_labels """ if len(input_names) != len(input_dims): raise ValueError("input_names and input_dims must be of the same sizes.") spec = self.spec for idx, dim in enumerate(input_dims): if ( hasattr(self, "_disable_rank5_shape_mapping") and self._disable_rank5_shape_mapping ): input_shape = dim else: if len(dim) == 3: input_shape = (dim[0], dim[1], dim[2]) elif len(dim) == 2: input_shape = (dim[1],) elif len(dim) == 1: input_shape = tuple(dim) else: raise RuntimeError( "Attempting to add a neural network " + "input with rank " + str(len(dim)) + ". All networks should take inputs of rank 1 or 3." ) spec.description.input[idx].type.multiArrayType.ClearField("shape") spec.description.input[idx].type.multiArrayType.shape.extend(input_shape) # TODO: if it's an embedding, this should be integer spec.description.input[ idx ].type.multiArrayType.dataType = _Model_pb2.ArrayFeatureType.DOUBLE spec.description.input[idx].name = input_names[idx]
[docs] def set_output(self, output_names, output_dims): """ Set the outputs of the network spec. Parameters ---------- output_names: list of str The output names of the network. output_dims: [tuple] The output dimensions of the network. The ordering of ``output_dims`` is the same as ``output_names``. Examples -------- .. sourcecode:: python # Set the neural network spec outputs to be 3 dimensional vector feature1 and # 4 dimensional vector feature2. builder.set_output(output_names=["feature1", "feature2"], output_dims=[(3,), (4,)]) See Also -------- set_input, set_class_labels """ if len(output_names) != len(output_dims): raise ValueError("output_names and output_dims must be of the same sizes.") spec = self.spec for idx, dim in enumerate(output_dims): spec.description.output[idx].type.multiArrayType.ClearField("shape") spec.description.output[idx].type.multiArrayType.shape.extend(dim) spec.description.output[ idx ].type.multiArrayType.dataType = _Model_pb2.ArrayFeatureType.DOUBLE spec.description.output[idx].name = output_names[idx]
[docs] def set_training_input(self, training_input): """ Set the training inputs of the network spec. Parameters ---------- training_input: [tuple] The training input names and type of the network. Examples -------- .. sourcecode:: python # Set the neural network spec training inputs to be 3 dimensional vector for 'input' and # Double for 'target'. builder.set_training_input([("input", datatypes.Array(3)), ("target", "Double")]) """ spec = self.spec set_training_features(spec, training_input)
[docs] def set_class_labels( self, class_labels, predicted_feature_name="classLabel", prediction_blob="" ): """ Set class labels to the model spec to make it a neural network classifier. Parameters ---------- class_labels: list of int or list of str A list of integers or strings that map the index of the output of a neural network to labels in a classifier. predicted_feature_name: str Name of the output feature for the class labels exposed in the Core ML neural network classifier, defaults: ``'classLabel'``. prediction_blob: str If provided, then this is the name of the neural network blob which generates the probabilities for each class label (typically the output of a softmax layer). If not provided, then the last output layer is assumed. See Also -------- set_input, set_output, set_pre_processing_parameters """ spec = self.spec nn_spec = self.nn_spec if len(spec.description.output) == 0: raise ValueError( "Model should have at least one output (the probabilities) to automatically make it a classifier." ) probOutput = spec.description.output[0] probOutput.type.dictionaryType.MergeFromString(b"") if len(class_labels) == 0: return class_type = type(class_labels[0]) if not isinstance(class_labels[0], (int, str)): raise TypeError( "Class labels must be of type Integer or String. (not %s)" % class_type ) spec.description.predictedProbabilitiesName = probOutput.name spec.description.predictedFeatureName = predicted_feature_name classLabel = spec.description.output.add() classLabel.name = predicted_feature_name if class_type == int: nn_spec.ClearField("int64ClassLabels") probOutput.type.dictionaryType.int64KeyType.MergeFromString(b"") classLabel.type.int64Type.MergeFromString(b"") for c in class_labels: nn_spec.int64ClassLabels.vector.append(c) else: nn_spec.ClearField("stringClassLabels") probOutput.type.dictionaryType.stringKeyType.MergeFromString(b"") classLabel.type.stringType.MergeFromString(b"") for c in class_labels: nn_spec.stringClassLabels.vector.append(c) if prediction_blob != "": # correctness here will be checked in the validator -- i.e. to # make sure this string corresponds to a real blob nn_spec.labelProbabilityLayerName = prediction_blob else: # not provided # assume it's the last blob produced in the network nn_spec.labelProbabilityLayerName = nn_spec.layers[-1].output[0]
[docs] def set_optional_input(self, input_idx, value=None, format="float"): """ Marks given input as optional input. Optionally, sets default value for optional input if value is not ``None``. Parameters ---------- input_idx: int Index of input to be marked and fill with default value. value: int/double/float/None Value to be fill as default value. format: str Format of default value. Must be one of ``'float'``, ``'double'``, or ``'int'``. """ if input_idx >= len(self.spec.description.input): msg = ( str(input_idx) + " out of " + str(len(self.spec.description.input)) + " inputs!" ) raise ValueError("Setting invalid input as optional! {}".format(msg)) self.spec.description.input[input_idx].type.isOptional = True if value is None: return # Default value is supported from CoreML 4 onwards. self.spec.specificationVersion = max( self.spec.specificationVersion, _SPECIFICATION_VERSION_IOS_14 ) format = format.lower() if format == "float": self.spec.description.input[ input_idx ].type.multiArrayType.floatDefaultValue = value elif format == "double": self.spec.description.input[ input_idx ].type.multiArrayType.doubleDefaultValue = value elif format == "int": self.spec.description.input[ input_idx ].type.multiArrayType.intDefaultValue = value else: raise ValueError( "Incorrect format for optional inputs! Expecting int/float/double, got {}!".format( format ) )
[docs] def add_optionals(self, optionals_in, optionals_out): """ Add optional inputs and outputs to the model spec. Parameters ---------- optionals_in: list of str List of inputs that are optionals. optionals_out: list of str List of outputs that are optionals. See Also -------- set_input, set_output """ spec = self.spec if (not optionals_in) and (not optionals_out): return input_types = [ datatypes.Array(dim) if isinstance(dim, int) else datatypes.Array(*dim) for (name, dim) in optionals_in ] output_types = [] for name, dim in optionals_out: if not dim: output_types.append(None) elif isinstance(dim, int): output_types.append(datatypes.Array(dim)) else: output_types.append(datatypes.Array(*dim)) input_names = [str(name) for (name, dim) in optionals_in] output_names = [str(name) for (name, dim) in optionals_out] input_features = list(zip(input_names, input_types)) output_features = list(zip(output_names, output_types)) len_before_in = len(spec.description.input) len_before_out = len(spec.description.output) # this appends to the existing model interface set_transform_interface_params(spec, input_features, output_features, True) # add types for any extra hidden inputs for idx in range(len_before_in, len(spec.description.input)): spec.description.input[ idx ].type.multiArrayType.dataType = _Model_pb2.ArrayFeatureType.DOUBLE for idx in range(len_before_out, len(spec.description.output)): spec.description.output[ idx ].type.multiArrayType.dataType = _Model_pb2.ArrayFeatureType.DOUBLE
def _check_fp16_weight_params_lstms(self, lstm_wp, has_peephole=True): """ Checks if an LSTM layer has at least one ``weight_param`` which is in FP16 format. Parameters ---------- lstm_wp: LSTM weights. has_peephole: if the LSTM has a peephole. """ if len(lstm_wp.inputGateWeightMatrix.float16Value) > 0: return True if len(lstm_wp.forgetGateWeightMatrix.float16Value) > 0: return True if len(lstm_wp.blockInputWeightMatrix.float16Value) > 0: return True if len(lstm_wp.outputGateWeightMatrix.float16Value) > 0: return True if len(lstm_wp.inputGateRecursionMatrix.float16Value) > 0: return True if len(lstm_wp.forgetGateRecursionMatrix.float16Value) > 0: return True if len(lstm_wp.blockInputRecursionMatrix.float16Value) > 0: return True if len(lstm_wp.outputGateRecursionMatrix.float16Value) > 0: return True if len(lstm_wp.inputGateWeightMatrix.float16Value) > 0: return True if has_peephole: if len(lstm_wp.inputGatePeepholeVector.float16Value) > 0: return True if len(lstm_wp.forgetGatePeepholeVector.float16Value) > 0: return True if len(lstm_wp.outputGatePeepholeVector.float16Value) > 0: return True return False def _check_fp16_weight_param_exists(self, layers): """ Checks if the network has at least one ``weight_param`` which is in FP16 format. Parameters ---------- layers: list of nn_spec.layer List of layers. """ for layer in layers: layer_type = layer.WhichOneof("layer") # Convolution if layer_type == "convolution": if len(layer.convolution.weights.float16Value) > 0: return True if layer.convolution.hasBias and len(layer.convolution.bias.float16Value) > 0: return True # Batchnorm elif layer_type == "batchnorm": if len(layer.batchnorm.mean.float16Value) > 0: return True # InnerProduct elif layer_type == "innerProduct": if len(layer.innerProduct.weights.float16Value) > 0: return True if layer.innerProduct.hasBias and len(layer.innerProduct.bias.float16Value) > 0: return True # BatchedMatmul elif layer_type == "batchedMatmul": if len(layer.batchedMatmul.weights.float16Value) > 0: return True if layer.batchedMatmul.hasBias and len(layer.batchedMatmul.bias.float16Value) > 0: return True # Embedding layer elif layer_type == "embedding": if len(layer.embedding.weights.float16Value) > 0: return True if layer.embedding.hasBias and len(layer.embedding.bias.float16Value) > 0: return True # Embedding ND layer elif layer_type == "embeddingND": if len(layer.embeddingND.weights.float16Value) > 0: return True if layer.embeddingND.hasBias and len(layer.embeddingND.bias.float16Value) > 0: return True # Scale layer elif layer_type == "scale": if len(layer.scale.shapeScale.float16Value) > 0: return True if layer.scale.hasBias and len(layer.scale.bias.float16Value) > 0: return True # Bias layer elif layer_type == "bias": if len(layer.bias.bias.float16Value) > 0: return True # LoadConstant layer elif layer_type == "loadConstant": if len(layer.loadConstant.data.float16Value) > 0: return True # Simple Recurrent elif layer_type == "simpleRecurrent": if len(layer.simpleRecurrent.weightMatrix.float16Value) > 0: return True if layer.simpleRecurrent.hasBiasVector and len(layer.simpleRecurrent.biasVector.float16Value) > 0: return True # GRU elif layer_type == "gru": if len(layer.gru.updateGateWeightMatrix.float16Value) > 0: return True if layer.gru.hasBiasVectors and len(layer.gru.outputGateBiasVector.float16Value) > 0: return True # uniDirectionalLSTM Layers elif layer_type == "uniDirectionalLSTM": return self._check_fp16_weight_params_lstms(lstm_wp=layer.uniDirectionalLSTM.weightParams, has_peephole=layer.uniDirectionalLSTM.params.hasPeepholeVectors) # biDirectionalLSTM Layers elif layer_type == "biDirectionalLSTM": for lstm_wp in layer.biDirectionalLSTM.weightParams: if self._check_fp16_weight_params_lstms(lstm_wp=lstm_wp, has_peephole=layer.biDirectionalLSTM.params.hasPeepholeVectors): return True # branch Layers elif layer_type == "branch": if len(layer.branch.ifBranch.float16Value) > 0: return True if len(layer.branch.elseBranch.float16Value) > 0: return True # loop Layers elif layer_type == "loop": if len(layer.loop.conditionNetwork.float16Value) > 0: return True if len(layer.loop.bodyNetwork.float16Value) > 0: return True return False
[docs] def make_updatable(self, trainables): """ Make the builder's NeuralNetwork spec updatable. Parameters ---------- trainables: list of str List of layer names to be set trainable. """ if self.spec is None: return # check if any layer weights/biases is in FP16 format if self._check_fp16_weight_param_exists(self.nn_spec.layers): raise ValueError("This model has at least one layer with FP16 weights or bias formats. These networks will " "always be optimized to a full FP16 model format which is not supported to be marked " "updatable. Either make sure the model has no FP16 WeightParams or split the " "network to two models with updatable part of the model as a separate model with no FP16 " "WeightParams. Note that updatable pipelines model can only have the last sub model marked " "as updatable.") self.spec.isUpdatable = True if ( not self.spec.specificationVersion or self.spec.specificationVersion < _MINIMUM_UPDATABLE_SPEC_VERSION ): self.spec.specificationVersion = _MINIMUM_UPDATABLE_SPEC_VERSION self.nn_spec.updateParams.MergeFromString(b"") self.set_shuffle() for trainable in trainables: if trainable not in self.layer_specs: raise ValueError("Layer %s does not exist." % trainable) spec_layer = self.layer_specs[trainable] spec_layer_type = spec_layer.WhichOneof("layer") if spec_layer_type not in _SUPPORTED_UPDATABLE_LAYERS: raise ValueError( "Layer %s is not supported to be marked as updatable. Only %s layers " "are supported to be marked updatable." % (trainable, _SUPPORTED_UPDATABLE_LAYERS) ) spec_layer.isUpdatable = True typed_layer = getattr(spec_layer, spec_layer.WhichOneof("layer")) for fd in typed_layer.DESCRIPTOR.fields: field = getattr(typed_layer, fd.name) if type(field) == _NeuralNetwork_pb2.LSTMWeightParams: wfs = _get_lstm_weight_fields(field) for wf in wfs: wf.isUpdatable = True elif type(field) == _NeuralNetwork_pb2.WeightParams: field.isUpdatable = True else: pass
[docs] def set_categorical_cross_entropy_loss(self, name, input): r""" Categorical Cross Entropy is used for single label categorization (only one category is applicable for each data point). Parameters ---------- name: The name of the loss layer input: The name of the input The ``input`` should be a vector of length N representing the distribution over N categories. This must be the output of a softmax. Notes ----- .. math:: Loss_ {CCE}(input, target) = -\sum_{i = 1} ^ {N}(target == i) log(input[i]) = - log(input[target]) """ if self.spec is None: return if name in self.layer_specs: raise ValueError("Name %s is already used." % name) if input is None: raise ValueError("Loss Layer input must be specified") target = input + "_true" if len(self.nn_spec.layers) < 1: raise ValueError( "Loss layer (%s) cannot be attached to an empty model." % name ) # validate input # input must be a softmax layer output input_validated = False for _, layer in enumerate(self.nn_spec.layers[::-1]): layer_outputs = list(layer.output) layer_type = layer.WhichOneof("layer") if input in layer_outputs and layer_type == "softmax": input_validated = True break if not input_validated: raise ValueError( "Categorical Cross Entropy loss layer input (%s) must be a softmax layer output." % input ) # validate target output_names = [x.name for x in self.spec.description.output] if target in output_names: raise ValueError( "Loss layer target (%s) must not be a model output." % target ) updating_classifier = False predicted_probabilities_name = self.spec.description.predictedProbabilitiesName predicted_feature_name = self.spec.description.predictedFeatureName if ( self.spec.HasField("neuralNetworkClassifier") and input == predicted_probabilities_name ): updating_classifier = True loss_layer = self.nn_spec.updateParams.lossLayers.add() self.layers.append(name) self.layer_specs[name] = loss_layer loss_layer.name = name loss_layer.categoricalCrossEntropyLossLayer.input = input loss_layer.categoricalCrossEntropyLossLayer.target = target training_inputs = self.spec.description.trainingInput training_inputs.extend(self.spec.description.input) training_input = training_inputs.add() if updating_classifier: training_input.name = predicted_feature_name classifier_output_type = [ x.type for x in self.spec.description.output if x.name == predicted_feature_name ] model_type = classifier_output_type[0].WhichOneof("Type") if model_type == "stringType": datatypes._set_datatype(training_input.type, datatypes.String()) elif model_type == "int64Type": datatypes._set_datatype(training_input.type, datatypes.Int64()) else: training_input.name = target datatypes._set_datatype(training_input.type, datatypes.Array(1)) training_input.type.multiArrayType.dataType = ( _Model_pb2.ArrayFeatureType.INT32 ) print( "Now adding input {} as target for categorical cross-entropy loss layer.".format( target ) )
[docs] def set_mean_squared_error_loss(self, name, input_feature=None): """ input_feature: [(str, datatypes.Array)] or None The input feature of the loss layer. Each feature is a ``(name, array)`` tuple, where ``name`` is the name of the model's tensor our loss will be attached to, and ``array`` is a ``datatypes.Array`` object describing the shape of that tensor. Both the name and the array's shape must be provided in the tuple. Examples -------- feature = [('output_tensor', datatypes.Array((299, 299, 3)))] """ if self.spec is None: return if name in self.layer_specs: raise ValueError("Name %s is already used." % name) if input_feature is None: raise ValueError("Loss Layer input must be specified") if not isinstance(input_feature, tuple): raise ValueError( "Loss layer input must be a tuple of type (string, datatype)" ) (fname, ftype) = input_feature if not isinstance(fname, str): raise ValueError( "Loss layer input must be a tuple of type (string, datatype)" ) if not isinstance(ftype, datatypes.Array): raise ValueError( "Loss layer input must be a tuple of type (string, datatype)" ) target = fname + "_true" loss_layer = self.nn_spec.updateParams.lossLayers.add() self.layers.append(name) self.layer_specs[name] = loss_layer loss_layer.name = name output_names = [x.name for x in self.spec.description.output] if target in output_names: raise ValueError( "Loss Layer target (%s) must not be a model output" % target ) loss_layer.meanSquaredErrorLossLayer.input = input_feature[0] loss_layer.meanSquaredErrorLossLayer.target = target training_inputs = self.spec.description.trainingInput training_inputs.extend(self.spec.description.input) training_input = training_inputs.add() training_input.name = target datatypes._set_datatype(training_input.type, input_feature[1]) training_input.type.multiArrayType.dataType = _Model_pb2.ArrayFeatureType.DOUBLE print( "Now adding input {} as target for mean squared error loss layer.".format( target ) )
def set_sgd_optimizer(self, sgd_params): if self.spec is None: return if not isinstance(sgd_params, SgdParams): raise Exception("sgd_params must be of instance SgdParams") sgd_optimizer = self.nn_spec.updateParams.optimizer.sgdOptimizer # set learning rate sgd_optimizer.learningRate.defaultValue = sgd_params.lr.value sgd_optimizer.learningRate.range.minValue = sgd_params.lr.min sgd_optimizer.learningRate.range.maxValue = sgd_params.lr.max # set mini batch size sgd_optimizer.miniBatchSize.defaultValue = sgd_params.batch.value sgd_optimizer.miniBatchSize.set.values.extend(sgd_params.batch.allowed_set) # set momentum sgd_optimizer.momentum.defaultValue = sgd_params.momentum.value sgd_optimizer.momentum.range.minValue = sgd_params.momentum.min sgd_optimizer.momentum.range.maxValue = sgd_params.momentum.max def set_adam_optimizer(self, adam_params): if self.spec is None: return if not isinstance(adam_params, AdamParams): raise Exception("adam_params must be of instance AdamParams") adam_optimizer = self.nn_spec.updateParams.optimizer.adamOptimizer # set learning rate adam_optimizer.learningRate.defaultValue = adam_params.lr.value adam_optimizer.learningRate.range.minValue = adam_params.lr.min adam_optimizer.learningRate.range.maxValue = adam_params.lr.max # set mini batch size adam_optimizer.miniBatchSize.defaultValue = adam_params.batch.value adam_optimizer.miniBatchSize.set.values.extend(adam_params.batch.allowed_set) # set beta1 adam_optimizer.beta1.defaultValue = adam_params.beta1.value adam_optimizer.beta1.range.minValue = adam_params.beta1.min adam_optimizer.beta1.range.maxValue = adam_params.beta1.max # set beta2 adam_optimizer.beta2.defaultValue = adam_params.beta2.value adam_optimizer.beta2.range.minValue = adam_params.beta2.min adam_optimizer.beta2.range.maxValue = adam_params.beta2.max # set eps adam_optimizer.eps.defaultValue = adam_params.eps.value adam_optimizer.eps.range.minValue = adam_params.eps.min adam_optimizer.eps.range.maxValue = adam_params.eps.max def set_epochs(self, epochs=1, allowed_set=None): if self.spec is None: return self.nn_spec.updateParams.epochs.defaultValue = epochs if allowed_set is None: self.nn_spec.updateParams.epochs.set.values.extend([epochs]) else: self.nn_spec.updateParams.epochs.set.values.extend(allowed_set) def set_shuffle(self, seed=None): if self.spec is None: return # Validate that seed passed in is integer if seed is not None: if not isinstance(seed, int): raise TypeError("Shuffle seed value must be integer") self.nn_spec.updateParams.shuffle.defaultValue = True if seed is not None: self.nn_spec.updateParams.seed.defaultValue = seed def _add_generic_layer( self, name, input_names, output_names, input_ranks=None, input_shapes=None, output_ranks=None, output_shapes=None, ): generic_layer = self.nn_spec.layers.add() generic_layer.name = name generic_layer.input.extend(input_names) generic_layer.output.extend(output_names) self.layers.append(name) if name in self.layer_specs: raise ValueError( 'Layer with name "%s" has already been added. Please use a unique name.' % name ) self.layer_specs[name] = generic_layer _fill_tensor_fields(generic_layer.inputTensor, input_ranks, input_shapes) _fill_tensor_fields(generic_layer.outputTensor, output_ranks, output_shapes) # Pass Rank Information # Generic Layer copies rank of first input to all of its output # All the layers that modifies rank apart from first input must override if input_names is not None and len(input_names) > 0: for output_ in output_names: self.rank_dict[output_] = self._get_rank(input_names[0]) return generic_layer
[docs] def inspect_layers(self, last=-1, verbose=False): """ Prints the summary for last "last" number of layers. Parameters ---------- last: int The numbers of layers to inspect, starting from the last one. verbose: bool Whether to display layer-specific parameters or not. """ n_layers = len(self.nn_spec.layers) if last < 0: last = n_layers for i, alayer in enumerate(self.nn_spec.layers[::-1]): if i >= last: break ( layer_type, name, in_blobs, out_blobs, params_info, ) = _summarize_network_layer_info(alayer) print( "[Id: {}], Name: {} (Type: {})".format( n_layers - i - 1, name, layer_type ) ) print(" " * 10 + "Updatable: {}".format(alayer.isUpdatable)) print(" " * 10 + "Input blobs: {}".format(in_blobs)) print(" " * 10 + "Output blobs: {}".format(out_blobs)) if verbose and len(params_info) > 0: print(" " * 10 + "Parameters: ") for param in params_info: print(" " * 14 + "{} = {}".format(param[0], param[1]))
[docs] def inspect_loss_layers(self): """ Prints the summary for the loss layer. """ n_loss_layers = len(self.nn_spec.updateParams.lossLayers) if n_loss_layers < 1: print("no loss layer detected.") for i, loss_layer in enumerate(self.nn_spec.updateParams.lossLayers[::-1]): loss_type = loss_layer.WhichOneof("LossLayerType") loss_name = loss_layer.name loss_input = None loss_target = None if loss_type == "categoricalCrossEntropyLossLayer": loss_input = loss_layer.categoricalCrossEntropyLossLayer.input loss_target = loss_layer.categoricalCrossEntropyLossLayer.target elif loss_type == "meanSquaredErrorLossLayer": loss_input = loss_layer.meanSquaredErrorLossLayer.input loss_target = loss_layer.meanSquaredErrorLossLayer.target print( "[Id: {}], Name: {} (Type: {})".format( n_loss_layers - i - 1, loss_name, loss_type ) ) print(" " * 10 + "Loss Input: {}".format(loss_input)) print(" " * 10 + "Loss Target: {}".format(loss_target))
[docs] def inspect_optimizer(self): """ Prints the summary for the optimizer. """ optimizer = self.nn_spec.updateParams.optimizer optimizer_type = optimizer.WhichOneof("OptimizerType") print("Optimizer Type: {}".format(optimizer_type)) if optimizer_type == "sgdOptimizer": lr = optimizer.sgdOptimizer.learningRate batch = optimizer.sgdOptimizer.miniBatchSize momentum = optimizer.sgdOptimizer.momentum print( "lr: {}, min: {}, max: {}".format( lr.defaultValue, lr.range.minValue, lr.range.maxValue ) ) print( "batch: {}, allowed_set: {}".format( batch.defaultValue, batch.set.values ) ) print( "momentum: {}, min: {}, max: {}".format( momentum.defaultValue, momentum.range.minValue, momentum.range.maxValue, ) ) elif optimizer_type == "adamOptimizer": lr = optimizer.adamOptimizer.learningRate batch = optimizer.adamOptimizer.miniBatchSize beta1 = optimizer.adamOptimizer.beta1 beta2 = optimizer.adamOptimizer.beta2 eps = optimizer.adamOptimizer.eps print( "lr: {}, min: {}, max: {}".format( lr.defaultValue, lr.range.minValue, lr.range.maxValue ) ) print( "batch: {}, allowed_set: {}".format( batch.defaultValue, batch.set.values ) ) print( "beta1: {}, min: {}, max: {}".format( beta1.defaultValue, beta1.range.minValue, beta1.range.maxValue ) ) print( "beta2: {}, min: {}, max: {}".format( beta2.defaultValue, beta2.range.minValue, beta2.range.maxValue ) ) print( "epsilon: {}, min: {}, max: {}".format( eps.defaultValue, eps.range.minValue, eps.range.maxValue ) )
[docs] def inspect_updatable_layers(self): """ Prints all updatable layers with their inputs and outputs. """ for _, layer in enumerate(self.nn_spec.layers[::-1]): if layer.isUpdatable: ( layer_type, name, in_blobs, out_blobs, _, ) = _summarize_network_layer_info(layer) print("Name: {} (Type: {})".format(name, layer_type)) print(" " * 10 + "Input blobs: {}".format(in_blobs)) print(" " * 10 + "Output blobs: {}".format(out_blobs))
[docs] def inspect_input_features(self): """ Prints the name and type of input features. """ input_features = self.spec.description.input n_input_features = len(input_features) if n_input_features < 1: return for i, input_feature in enumerate(input_features[::-1]): print( "[Id: {}] Name: {}".format(n_input_features - i - 1, input_feature.name) ) print(" " * 10 + "Type: {}".format(input_feature.type))
[docs] def inspect_output_features(self): """ Prints the name and type of output features. """ output_features = self.spec.description.output n_output_features = len(output_features) if n_output_features < 1: return for i, output_feature in enumerate(output_features[::-1]): print( "[Id: {}] Name: {}".format( n_output_features - i - 1, output_feature.name ) ) print(" " * 10 + "Type: {}".format(output_feature.type))
[docs] def inspect_conv_channels(self, layer_name): """ Prints the output and kernel channels of a convolution layer. """ if self.spec is None: return if layer_name not in self.layer_specs: raise ValueError("Layer %s does not exist." % (layer_name)) spec_layer = self.layer_specs[layer_name] if spec_layer.WhichOneof("layer") != "convolution": raise ValueError("Layer %s is not a convolution layer." % (layer_name)) output_channels = spec_layer.convolution.outputChannels kernel_channels = spec_layer.convolution.kernelChannels print("outputChannels: {}".format(output_channels)) print("kernelChannels: {}".format(kernel_channels))
[docs] def inspect_innerproduct_channels(self, layer_name): """ Prints the output and kernel channels of an innerProduct layer. """ if self.spec is None: return if layer_name not in self.layer_specs: raise ValueError("Layer %s does not exist." % (layer_name)) spec_layer = self.layer_specs[layer_name] if spec_layer.WhichOneof("layer") != "innerProduct": raise ValueError("Layer %s is not an innerProduct layer." % (layer_name)) input_channels = spec_layer.innerProduct.inputChannels output_channels = spec_layer.innerProduct.outputChannels print("inputChannels: {}".format(input_channels)) print("outputChannels: {}".format(output_channels))
def _get_rank(self, name): return self.rank_dict[name] if name in self.rank_dict else -1 def _set_max_input_rank(self, input_names, output_name): if len(input_names) == 0: raise ValueError("Input name list empty for collecting rank information") self.rank_dict[output_name] = -1 for i in range(0, len(input_names)): input_rank = self._get_rank(input_names[i]) if input_rank == -1: self.rank_dict[output_name] = -1 return self.rank_dict[output_name] = max(self._get_rank(output_name), input_rank) def _set_rank_for_reduce_op( self, input_name, output_name, axes, keepdims, reduce_all ): if keepdims: self.rank_dict[output_name] = self._get_rank(input_name) else: if reduce_all or self._get_rank(input_name) == 1: self.rank_dict[output_name] = 1 elif axes is not None and len(axes) > 0: rank = self._get_rank(input_name) - len(axes) self.rank_dict[output_name] = rank if rank != 0 else 1 else: raise ValueError( "Reduce Ops must provide axes to reduce on if reduce_all is False" )
[docs] def add_inner_product( self, name, W, b, input_channels, output_channels, has_bias, input_name, output_name, int_8_dynamic_quantize=False, is_quantized_weight=False, quantization_type="linear", nbits=8, quant_scale=None, quant_bias=None, quant_lut=None, ): """ Add an inner product layer to the model. Refer to the ``InnerProductLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. W: numpy.array or bytes() Weight matrix of shape ``(output_channels, input_channels)``. If ``W`` is of type ``bytes()`` (quantized), other quantization related arguments must be provided as well (see below). b: numpy.array Bias vector of shape: ``(output_channels, )``. input_channels: int Number of input channels. output_channels: int Number of output channels. has_bias: boolean Whether the bias vector of this layer is ignored in the spec. - If True, the bias vector of this layer is not ignored. - If False, the bias vector is ignored. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. Quantization arguments, used when ``W`` is of type ``bytes()``: int_8_dynamic_quantize: boolean Whether to quantize and dequantize before and after inner product, respectively. Expects byte weights, representing int8 values, if True. See NeuralNetwork.proto for other validation conditions. is_quantized_weight: bool, optional Set it to true when ``W`` is of type ``bytes()``, representing quantized weights, default: false. quantization_type: str When weights are quantized (that is, ``W`` is of type ``bytes()``), this should be either ``"linear"`` or ``"lut"``. nbits: int Should be between 1 and 8 (inclusive). Number of bits per weight value. Only applicable when weights are quantized. quant_scale: numpy.array(dtype=numpy.float32) scale vector to be used with linear quantization. Must be of length either 1 or output_channels. quant_bias: numpy.array(dtype=numpy.float32) bias vector to be used with linear quantization. Must be of length either 1 or output_channels. quant_lut: numpy.array(dtype=numpy.float32) the LUT (look up table) to be used with LUT quantization. Must be of length 2^n bits. See Also -------- add_embedding, add_convolution, add_batched_mat_mul """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.innerProduct # Fill in the parameters spec_layer_params.inputChannels = input_channels spec_layer_params.outputChannels = output_channels spec_layer_params.hasBias = has_bias spec_layer_params.int8DynamicQuantize = int_8_dynamic_quantize weights = spec_layer_params.weights if not is_quantized_weight and isinstance(W, _np.ndarray): weights.floatValue.extend(W.flatten()) else: _verify_quantization_arguments( weight=W, output_channels=output_channels, quantization_type=quantization_type, nbits=nbits, quant_scale=quant_scale, quant_bias=quant_bias, quant_lut=quant_lut, int_8_dynamic_quantize=int_8_dynamic_quantize, ) _fill_quantized_weights( weights_message=weights, W=W, use_int_8=int_8_dynamic_quantize, quantization_type=quantization_type, nbits=nbits, quant_scale=quant_scale, quant_bias=quant_bias, quant_lut=quant_lut, ) if has_bias: bias = spec_layer_params.bias bias.floatValue.extend(b.flatten()) return spec_layer
[docs] def add_embedding( self, name, W, b, input_dim, output_channels, has_bias, input_name, output_name, is_quantized_weight=False, quantization_type="linear", nbits=8, quant_scale=None, quant_bias=None, quant_lut=None, ): """ Add an embedding layer to the model. Refer to the ``EmbeddingLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. W: float32 numpy.array or bytes() Weight matrix of shape ``(output_channels, input_dim)``. If ``W`` is of type ``bytes()`` (quantized to 1-8 bits), other quantization related arguments must be provided as well (see below). b: numpy.array Bias vector of shape ``(output_channels, )``. input_dim: int Size of the vocabulary (1 + maximum integer index of the words). output_channels: int Number of output channels. has_bias: boolean Whether the bias vector of this layer is ignored in the ``spec``. - If True, the bias vector of this layer is not ignored. - If False, the bias vector is ignored. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. Quantization arguments expected, when ``W`` is of type ``bytes()``: is_quantized_weight: bool Set it to true when ``W`` is of type ``bytes()``, representing quantized weights. quantization_type: str When weights are quantized (that is, ``W`` is of type ``bytes()``), this should be either ``"linear"`` or ``"lut"``. nbits: int Should be between 1 and 8 (inclusive). Number of bits per weight value. quant_scale: numpy.array(dtype=numpy.float32) Scale vector to be used with linear quantization. Must be of length either 1 or output_channels. quant_bias: numpy.array(dtype=numpy.float32) Bias vector to be used with linear quantization. Must be of length either 1 or output_channels. quant_lut: numpy.array(dtype=numpy.float32) The LUT (look up table) to be used with LUT quantization. Must be of length 2^n bits. See Also -------- add_inner_product """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) # Fill in the parameters spec_layer_params = spec_layer.embedding spec_layer_params.inputDim = input_dim spec_layer_params.outputChannels = output_channels spec_layer_params.hasBias = has_bias weights = spec_layer_params.weights if not is_quantized_weight: weights.floatValue.extend(W.flatten()) else: _verify_quantization_arguments( weight=W, output_channels=output_channels, quantization_type=quantization_type, nbits=nbits, quant_scale=quant_scale, quant_bias=quant_bias, quant_lut=quant_lut, ) _fill_quantized_weights( weights_message=weights, W=W, quantization_type=quantization_type, nbits=nbits, quant_scale=quant_scale, quant_bias=quant_bias, quant_lut=quant_lut, ) if has_bias: bias = spec_layer_params.bias bias.floatValue.extend(b.flatten()) return spec_layer
[docs] def add_softmax(self, name, input_name, output_name): """ Add a softmax layer to the model. Refer to the ``SoftmaxLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_activation, add_inner_product, add_convolution """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.softmax.MergeFromString(b"") return spec_layer
[docs] def add_activation( self, name, non_linearity, input_name, output_name, params=None, input_rank=None, input_shape=None, output_rank=None, output_shape=None, ): """ Add an activation layer to the model. Refer to the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. non_linearity: str The ``non_linearity`` (activation) function of this layer. It can be one of the following: - ``'RELU'``: Rectified Linear Unit (ReLU) function. - ``'SIGMOID'``: sigmoid function. - ``'TANH'``: tanh function. - ``'SCALED_TANH'``: scaled tanh function, defined as: ``f(x) = alpha * tanh(beta * x)`` where ``alpha`` and ``beta`` are constant scalars. - ``'SOFTPLUS'``: softplus function. - ``'SOFTSIGN'``: softsign function. - ``'SIGMOID_HARD'``: hard sigmoid function, defined as: ``f(x) = min(max(alpha * x + beta, -1), 1)`` where ``alpha`` and ``beta`` are constant scalars. - ``'LEAKYRELU'``: leaky relu function, defined as: ``f(x) = (x >= 0) * x + (x < 0) * alpha * x`` where ``alpha`` is a constant scalar. - ``'PRELU'``: Parametric ReLU function, defined as: ``f(x) = (x >= 0) * x + (x < 0) * alpha * x`` where ``alpha`` is a multi-dimensional array of same size as ``x``. - ``'ELU'``: Exponential linear unit function, defined as: ``f(x) = (x >= 0) * x + (x < 0) * (alpha * exp(x) - 1)`` where ``alpha`` is a constant scalar. - ``'PARAMETRICSOFTPLUS'``: Parametric softplus function, defined as: ``f(x) = alpha * log(1 + exp(beta * x))`` where ``alpha`` and ``beta`` are two multi-dimensional arrays of same size as ``x``. - ``'THRESHOLDEDRELU'``: Thresholded ReLU function, defined as: ``f(x) = (x >= alpha) * x`` where ``alpha`` is a constant scalar. - ``'LINEAR'``: linear function. ``f(x) = alpha * x + beta`` input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. params: list of float or numpy.array Parameters for the activation, depending on non_linearity. - When ``non_linearity`` is one of [``'RELU'``, ``'SIGMOID'``, ``'TANH'``, ``'SCALED_TANH'``, ``'SOFTPLUS'``, ``'SOFTSIGN'``], params is ignored. - When ``non_linearity`` is one of [``'SCALED_TANH'``, ``'SIGMOID_HARD'``, ``'LINEAR'``], param is a list of 2 floats ``[alpha, beta]``. - When ``non_linearity`` is one of [``'LEAKYRELU'``, ``'ELU'``, ``'THRESHOLDEDRELU'``], param is a list of 1 float ``[alpha]``. - When ``non_linearity`` is ``'PRELU'``, param is a list of 1 numpy array ``[alpha]``. The shape of ``alpha`` is ``(C,)``, where ``C`` is either the number of input channels or 1. When ``C = 1``, same ``alpha`` is applied to all channels. - When ``non_linearity`` is ``'PARAMETRICSOFTPLUS'``, param is a list of 2 numpy arrays ``[alpha, beta]``. The shape of ``alpha`` and `beta` is ``(C, )``, where ``C`` is either the number of input channels or 1. When ``C = 1``, same ``alpha`` and ``beta`` are applied to all channels. See Also -------- add_convolution, add_softmax """ input_rank = ( len(input_shape) if (input_shape and not input_rank) else input_rank ) output_rank = ( len(output_shape) if (output_shape and not output_rank) else output_rank ) spec_layer = self._add_generic_layer( name, [input_name], [output_name], [input_rank] if input_rank else None, [input_shape] if input_shape else None, [output_rank] if output_rank else None, [output_shape] if output_shape else None, ) spec_layer_params = spec_layer.activation # Fill in the parameters non_linearity = ( non_linearity.upper() if isinstance(non_linearity, str) else non_linearity ) if non_linearity == "RELU": spec_layer_params.ReLU.MergeFromString(b"") elif non_linearity == "SIGMOID": spec_layer_params.sigmoid.MergeFromString(b"") elif non_linearity == "TANH": spec_layer_params.tanh.MergeFromString(b"") elif non_linearity == "SCALED_TANH": spec_layer_params.scaledTanh.MergeFromString(b"") if params is None: alpha, beta = (0.0, 0.0) else: alpha, beta = params[0], params[1] spec_layer_params.scaledTanh.alpha = alpha spec_layer_params.scaledTanh.beta = beta elif non_linearity == "SOFTPLUS": spec_layer_params.softplus.MergeFromString(b"") elif non_linearity == "SOFTSIGN": spec_layer_params.softsign.MergeFromString(b"") elif non_linearity == "SIGMOID_HARD": if params is None: alpha, beta = (0.2, 0.5) else: alpha, beta = params[0], params[1] spec_layer_params.sigmoidHard.alpha = alpha spec_layer_params.sigmoidHard.beta = beta elif non_linearity == "LEAKYRELU": if params is None: alpha = 0.3 else: alpha = params[0] spec_layer_params.leakyReLU.alpha = float(alpha) elif non_linearity == "PRELU": # PReLU must provide an np array in params[0] spec_layer_params.PReLU.alpha.floatValue.extend(params.flatten()) elif non_linearity == "ELU": # ELU must provide an alpha in params[0] spec_layer_params.ELU.alpha = float(params) elif non_linearity == "PARAMETRICSOFTPLUS": # Parametric softplus must provide two np arrays for alpha and beta alphas, betas = (params[0], params[1]) # Weight alignment: Keras [H,W,C,F] spec_layer_params.parametricSoftplus.alpha.floatValue.extend( alphas.flatten() ) spec_layer_params.parametricSoftplus.beta.floatValue.extend(betas.flatten()) elif non_linearity == "THRESHOLDEDRELU": if params is None: theta = 1.0 else: theta = params spec_layer_params.thresholdedReLU.alpha = float(theta) elif non_linearity == "LINEAR": if params is None: alpha, beta = (1.0, 0.0) else: alpha, beta = params[0], params[1] spec_layer_params.linear.alpha = alpha spec_layer_params.linear.beta = beta else: raise TypeError("Unknown activation type %s." % non_linearity) return spec_layer
[docs] def add_elementwise(self, name, input_names, output_name, mode, alpha=None): """ Add an element-wise operation layer to the model. Refer to the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str A list of input blob names of this layer. The input blobs should have the same shape. output_name: str The output blob name of this layer. mode: str A string specifying the mode of the elementwise layer. It can be one of the following: - ``'CONCAT'``: Concatenate input blobs along the channel axis. - ``'SEQUENCE_CONCAT'``: Concatenate input blobs along the sequence axis. - ``'ADD'``: Perform an element-wise summation over the input blobs. - ``'MULTIPLY'``: Perform an element-wise multiplication over the input blobs. - ``'DOT'``: Compute the dot product of the two input blobs. In this mode, the length of ``input_names`` should be 2. - ``'COS'``: Compute the cosine similarity of the two input blobs. In this mode, the length of ``input_names`` should be 2. - ``'MAX'``: Compute the element-wise maximum over the input blobs. - ```'MIN'```: Compute the element-wise minimum over the input blobs. - ``'AVE'``: Compute the element-wise average over the input blobs. alpha: float * if ``mode == 'ADD'`` and there is only one ``input_name``, ``alpha`` is added to the input. * if ``mode == 'MULTIPLY'`` and there is only one ``input_name``, ``alpha`` is multiplied to the input. See Also -------- add_upsample, add_sequence_repeat """ input_names = input_names if isinstance(input_names, list) else [input_names] spec_layer = self._add_generic_layer(name, input_names, [output_name]) # add one of the following layers mode = mode.upper() if isinstance(mode, str) else mode if mode == "CONCAT": spec_layer.concat.sequenceConcat = False elif mode == "SEQUENCE_CONCAT": spec_layer.concat.sequenceConcat = True elif mode == "ADD": spec_layer.add.MergeFromString(b"") if alpha: spec_layer.add.alpha = alpha elif mode == "MULTIPLY": spec_layer.multiply.MergeFromString(b"") if alpha: spec_layer.multiply.alpha = alpha elif mode == "COS": spec_layer.dot.cosineSimilarity = True elif mode == "DOT": spec_layer.dot.cosineSimilarity = False elif mode == "MAX": spec_layer.max.MergeFromString(b"") elif mode == "MIN": spec_layer.min.MergeFromString(b"") elif mode == "AVE": spec_layer.average.MergeFromString(b"") else: raise ValueError("Unsupported elementwise mode %s" % mode) return spec_layer
[docs] def add_upsample( self, name, scaling_factor_h, scaling_factor_w, input_name, output_name, mode="NN", linear_upsample_mode="DEFAULT", ): """ Add an upsample layer to the model. Refer to the ``UpsampleLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. scaling_factor_h: int or float Scaling factor on the vertical direction. Float values only supported with ``BILINEAR`` and ``ALIGN_CORNERS_*``. scaling_factor_w: int or float Scaling factor on the horizontal direction. Float values only supported with ``BILINEAR`` and ``ALIGN_CORNERS_*``. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. mode: str Overall interpolation mode. The following values are supported: * ``'NN'``: nearest neighbour * ``'BILINEAR'``: bilinear interpolation linear_upsample_mode: str Specifies the behavior for linear upsampling. Only valid when Interpolation Mode is ``BILINEAR``. If input grid is ``[0, Xin-1]`` (corresponding to an input size of ``Xin``), and if the output size is ``Xout``, then the grid points are sampled in the following manner: 'DEFAULT': - ``spacing = (Xin-Xin/Xout) / (Xout-1)`` - ``grid_point[i] = min(Xin-1, max(0, i * spacing)), for i = 0,1,2,..,Xout-1`` 'ALIGN_CORNERS_TRUE': - ``spacing = (Xin-1) / (Xout-1)`` - ``grid_point[i] = min(Xin-1, max(0, i * spacing)), for i = 0,1,2,..,Xout-1`` 'ALIGN_CORNERS_FALSE': - ``spacing = Xin / Xout`` - ``grid_point[i] = min(Xin-1, max(0, i * spacing + 0.5 * spacing - 0.5)), for i = 0,1,2,..,Xout-1`` See Also -------- add_resize_bilinear """ mode = mode.upper() if isinstance(mode, str) else mode linear_upsample_mode = ( linear_upsample_mode.upper() if isinstance(linear_upsample_mode, str) else linear_upsample_mode ) if mode not in ["NN", "BILINEAR"]: raise ValueError("Unsupported upsampling mode %s" % mode) if linear_upsample_mode not in ["DEFAULT", "ALIGN_CORNERS_TRUE", "ALIGN_CORNERS_FALSE"]: raise ValueError( "Unsupported linear upsampling mode %s" % linear_upsample_mode ) # Default linear upsample mode is backwards compatible, else set spec to iOS14 if ( linear_upsample_mode != "DEFAULT" and self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ) ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.upsample if ( scaling_factor_h - _math_floor(scaling_factor_h) > 0.001 or scaling_factor_w - _math_floor(scaling_factor_w) > 0.001 ): if mode != "BILINEAR" or linear_upsample_mode not in [ "ALIGN_CORNERS_TRUE", "ALIGN_CORNERS_FALSE", ]: raise ValueError( "Fractional upsampling only compatible with BILINEAR and ALIGN_CORNERS_TRUE or ALIGN_CORNERS_FALSE" ) spec_layer_params.fractionalScalingFactor.append(float(scaling_factor_h)) spec_layer_params.fractionalScalingFactor.append(float(scaling_factor_w)) else: spec_layer_params.scalingFactor.append(int(scaling_factor_h)) spec_layer_params.scalingFactor.append(int(scaling_factor_w)) spec_layer_params.mode = _NeuralNetwork_pb2.UpsampleLayerParams.InterpolationMode.Value( mode ) spec_layer_params.linearUpsampleMode = _NeuralNetwork_pb2.UpsampleLayerParams.LinearUpsampleMode.Value( linear_upsample_mode ) return spec_layer
[docs] def add_scale( self, name, W, b, has_bias, input_name, output_name, shape_scale=None, shape_bias=None, ): """ Add a scale layer to the model. Refer to the ``ScaleLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. W: int or numpy.array Scale of the input. b: int or numpy.array Bias to add to the input. has_bias: boolean Whether the bias vector of this layer is ignored in the ``spec``. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. shape_scale: list of int or tuple of int List of ints that specifies the shape of the scale parameter. Can be ``[1]``, ``[C]``, ``[1,H,W]``, or ``[C,H,W]``. shape_bias: list of int List of ints that specifies the shape of the bias parameter (if present). Can be ``[1]``, ``[C]``, ``[1,H,W]``, or ``[C,H,W]``. See Also -------- add_bias """ if not shape_scale: shape_scale = [1] if not shape_bias: shape_bias = [1] spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.scale spec_layer_params.hasBias = has_bias # add scale and its shape scale = spec_layer_params.scale spec_layer_params.shapeScale.extend(shape_scale) if isinstance(W, int): scale.floatValue.append(float(W)) else: scale.floatValue.extend(W.flatten()) if len(scale.floatValue) != _np.prod(shape_scale): raise ValueError( "Dimensions of 'shape_scale' do not match the size of the provided 'scale' parameter" ) # add bias and its shape if has_bias: bias = spec_layer_params.bias spec_layer_params.shapeBias.extend(shape_bias) if isinstance(b, int): bias.floatValue.append(float(b)) else: bias.floatValue.extend(b.flatten()) if len(bias.floatValue) != _np.prod(shape_bias): raise ValueError( "Dimensions of 'shape_bias' do not match the size of the provided 'b' parameter" ) return spec_layer
[docs] def add_bias(self, name, b, input_name, output_name, shape_bias=None): """ Add a bias layer to the model. Refer to the ``BiasLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. b: int or numpy.array Bias to add to the input. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. shape_bias: list of int List of ints that specifies the shape of the bias parameter (if present). Can be ``[1]``, ``[C]``, ``[1,H,W]``, or ``[C,H,W]``. See Also -------- add_scale """ if not shape_bias: shape_bias = [1] spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.bias # add bias and its shape bias = spec_layer_params.bias if len(shape_bias) != 1 and len(shape_bias) != 3: raise ValueError("Shape of bias layer must have length 1 or 3.") spec_layer_params.shape.extend(shape_bias) if isinstance(b, int): bias.floatValue.append(float(b)) else: bias.floatValue.extend(b.flatten()) if len(bias.floatValue) != _np.prod(shape_bias): raise ValueError( "Dimensions of 'shape_bias' do not match the size" "of the provided 'b' parameter" ) return spec_layer
[docs] def add_sequence_repeat(self, name, nrep, input_name, output_name): """ Add a sequence repeat layer to the model. Refer to the ``SequenceRepeatLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. nrep: int Number of repetitions of the input blob along the sequence axis. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_upsample, add_elementwise """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.sequenceRepeat spec_layer_params.nRepetitions = nrep return spec_layer
[docs] def add_convolution( self, name, kernel_channels, output_channels, height, width, stride_height, stride_width, border_mode, groups, W, b, has_bias, is_deconv=False, output_shape=None, input_name="data", output_name="out", dilation_factors=[1, 1], padding_top=0, padding_bottom=0, padding_left=0, padding_right=0, same_padding_asymmetry_mode="BOTTOM_RIGHT_HEAVY", **kwargs ): """ Add a convolution layer to the network. Refer to the ``ConvolutionLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. kernel_channels: int Number of channels for the convolution kernels. output_channels: int Number of filter kernels. This is equal to the number of channels in the output blob. height: int Height of each kernel. width: int Width of each kernel. stride_height: int Stride along the height direction. stride_width: int Stride along the height direction. border_mode: str Option for the padding type and output blob shape. Can be either 'valid' or 'same'. groups: int Number of kernel groups. Input is divided into groups along the channel axis. Each kernel group share the same weights. W: numpy.array or bytes() or None Weight of the convolution kernels. * If ``is_deconv`` is False, ``W`` should have shape ``(height, width, kernel_channels, output_channels)``, where:: kernel_channel = input_channels / groups * If ``is_deconv`` is True, ``W`` should have shape ``(height, width, kernel_channels, output_channels / groups)``, where:: kernel_channel = input_channels * If ``W`` is of type ``bytes()`` (quantized), other quantization-related arguments must be provided as well (see below). * For Core ML specification version >=4, ``W`` can be ``None``. In this case, the convolution layer takes 2 inputs, where the 1st input represents the input feature map, and the 2nd input represents the weight blob. b: numpy.array Biases of the convolution kernels. ``b`` should have shape ``(outputChannels, )``. has_bias: boolean Whether bias is ignored. - If True, bias is not ignored. - If False, bias is ignored. is_deconv: boolean Whether the convolution layer is performing a convolution or a transposed convolution (deconvolution). - If True, the convolution layer is performing transposed convolution. - If False, the convolution layer is performing regular convolution. output_shape: tuple or None Either ``None`` or a 2-tuple, specifying the output shape ``(output_height, output_width)``. - Used only when ``is_deconv == True``. - When ``is_deconv == False``, this parameter is ignored. - If it is ``None``, the output shape is calculated automatically using the ``border_mode``. input_name: str or list of str The input blob name(s) of this layer. output_name: str The output blob name of this layer. dilation_factors: list of int Dilation factors across height and width directions. Must be a list of two positive integers. Defaults to ``[1, 1]``. padding_top, padding_bottom, padding_left, padding_right: int Values of height (top, bottom) and width (left, right) padding to be used if ``border_more`` is ``"valid"``. same_padding_asymmetry_mode: str Type of asymmetric padding to be used when ``border_mode`` is ``'same'``. Can be either ``'BOTTOM_RIGHT_HEAVY'`` or ``'TOP_LEFT_HEAVY'``. Quantization Quantization arguments expected in ``kwargs``, when ``W`` is of type ``bytes()``. quantization_type: str When weights are quantized (that is, ``W`` is of type ``bytes()``), this should be either ``"linear"`` or ``"lut"``. nbits: int Should be between 1 and 8 (inclusive). Number of bits per weight value. Only applicable when weights are quantized. quant_scale: numpy.array(dtype=numpy.float32) scale vector to be used with linear quantization. Must be of length either 1 or ``output_channels``. quant_bias: numpy.array(dtype=numpy.float32) bias vector to be used with linear quantization. Must be of length either 1 or ``output_channels``. quant_lut: numpy.array(dtype=numpy.float32) the LUT (look up table) to be used with LUT quantization. Must be of length 2^n bits. Depthwise convolution Depthwise convolution is a special case of convolution, in which: * ``kernel_channels = 1 (== input_channels / groups)`` * ``output_channels = channel_multiplier * input_channels`` * ``groups = input_channels`` * ``W``: ``[Kernel_height, Kernel_width, 1, channel_multiplier * input_channels]`` See Also -------- add_convolution3d, add_pooling, add_activation, add_batchnorm """ if isinstance(input_name, tuple): input_names = list(input_name) elif isinstance(input_name, list): input_names = input_name else: input_names = [input_name] spec_layer = self._add_generic_layer(name, input_names, [output_name]) # Set the layer params spec_layer_params = spec_layer.convolution spec_layer_params.isDeconvolution = is_deconv if is_deconv and output_shape: spec_layer_params.outputShape.append(output_shape[0]) spec_layer_params.outputShape.append(output_shape[1]) spec_layer_params.outputChannels = output_channels spec_layer_params.kernelChannels = kernel_channels spec_layer_params.kernelSize.append(height) spec_layer_params.kernelSize.append(width) spec_layer_params.stride.append(stride_height) spec_layer_params.stride.append(stride_width) border_mode = ( border_mode.lower() if isinstance(border_mode, str) else border_mode ) same_padding_asymmetry_mode = ( same_padding_asymmetry_mode.upper() if isinstance(same_padding_asymmetry_mode, str) else same_padding_asymmetry_mode ) if border_mode == "valid": height_border = spec_layer_params.valid.paddingAmounts.borderAmounts.add() height_border.startEdgeSize = padding_top height_border.endEdgeSize = padding_bottom width_border = spec_layer_params.valid.paddingAmounts.borderAmounts.add() width_border.startEdgeSize = padding_left width_border.endEdgeSize = padding_right elif border_mode == "same": if not ( same_padding_asymmetry_mode == "BOTTOM_RIGHT_HEAVY" or same_padding_asymmetry_mode == "TOP_LEFT_HEAVY" ): raise ValueError( "Invalid value %d of same_padding_asymmetry_mode parameter" % same_padding_asymmetry_mode ) spec_layer_params.same.asymmetryMode = _NeuralNetwork_pb2.SamePadding.SamePaddingMode.Value( same_padding_asymmetry_mode ) else: raise NotImplementedError( "Border mode %s is not implemented." % border_mode ) spec_layer_params.nGroups = groups spec_layer_params.hasBias = has_bias # add dilation factors spec_layer_params.dilationFactor.append(dilation_factors[0]) spec_layer_params.dilationFactor.append(dilation_factors[1]) # If weight comes from another tensor just return if len(input_names) > 1: return # Weight assignments quantization = len(kwargs) > 0 and ('quantization_type' in kwargs and kwargs.get('quantization_type') is not None) if quantization: _verify_quantization_arguments( weight=W, output_channels=output_channels, **kwargs ) nbits = kwargs.get("nbits", 8) num_weights = (output_channels * kernel_channels * height * width) / groups if nbits < 8: byte_arr = _np.frombuffer(W, dtype=_np.uint8) W = _unpack_to_bytes(byte_arr, num_weights, nbits) else: W = _np.frombuffer(W, dtype=_np.uint8) if is_deconv: W = _np.reshape( W, (height, width, kernel_channels, output_channels / groups) ) else: W = _np.reshape(W, (height, width, kernel_channels, output_channels)) # Weight alignment: MLModel Spec requires following weight arrangement: # is_deconv == False ==> (output_channels, kernel_channels, height, width), where kernel_channel = input_channels / groups # is_deconv == True ==> (kernel_channels, output_channels / groups, height, width), where kernel_channel = input_channels if not is_deconv: Wt = W.transpose((3, 2, 0, 1)) Wt = Wt.flatten() else: Wt = W.transpose((2, 3, 0, 1)).flatten() # Assign weights weights = spec_layer_params.weights if not quantization: # no quantization weights.floatValue.extend(Wt.flatten()) else: # there is quantization W_bytes = bytes() if nbits == 8: W_bytes += Wt.flatten().tobytes() else: W_bytes += _convert_array_to_nbit_quantized_bytes( Wt.flatten(), nbits ).tobytes() _fill_quantized_weights(weights_message=weights, W=W_bytes, **kwargs) # Assign biases if has_bias: bias = spec_layer_params.bias for f in range(output_channels): bias.floatValue.append(float(b[f])) return spec_layer
[docs] def add_convolution3d( self, name, input_channels, output_channels, depth, height, width, W, b, has_bias, groups=1, stride_depth=1, stride_height=1, stride_width=1, dilation_width=1, dilation_height=1, dilation_depth=1, is_deconv=False, output_shape=None, padding_mode="valid", padding_front=0, padding_back=0, padding_top=0, padding_bottom=0, padding_left=0, padding_right=0, input_name="data", output_name="out", ): """ Add a 3 dimensional convolution layer to the network. Refer to the ``Convolution3DLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_channels: int Number of input channels. output_channels: int Number of filter kernels. This is equal to the number of channels in the output blob. depth: int Depth of each kernel. height: int Height of each kernel. width: int Width of each kernel. W: numpy.array or bytes() Weight of the convolution kernels. ``W`` should have shape: - If ``deconv`` is False: ``(output_channels, kernel_channels, depth, height, width)``, where: ``kernel_channels = input_channels / groups`` - If ``deconv`` is True: ``(output_channels / groups, kernel_channels, depth, height, width)``, where: ``kernel_channels = input_channels`` b: numpy.array Biases of the convolution kernels. ``b`` should have shape ``(outputChannels, )``. has_bias: boolean Whether bias is ignored. - If True, bias is not ignored. - If False, bias is ignored. groups: int Number of kernel groups. Input is divided into groups along the channel axis. Each kernel group share the same weights. Defaults to 1. stride_depth, stride_height, stride_width: int Stride along the depth, height, and width directions, respectively. Must all be positive integers. Defaults to 1. dilation_depth, dilation_width, dilation_height: int Dilation factors across depth, height, and width directions. Must all be positive integers. Defaults to 1 in each dimension. is_deconv: bool True if this is Convolution Transpose, otherwise False. output_shape: None or Tuple of int Applicable only for Deconvolution layer. ``None`` if Convolution. Tuple of length 3 if Convolution Transpose. padding_mode: str Option for the padding type and output blob shape. Can be ``'custom'``, ``'valid'``, or ``'same'``. Defaults to ``'valid'``. Case-insensitive. padding_front, padding_back, padding_top, padding_bottom, padding_left, padding_right: int Values of depth (front, back), height (top, bottom), and width (left, right) padding to be used. Must all be positive integers. All default to 0. input_name: str or list of str The input blob name(s) of this layer. output_name: str The output blob name of this layer. Depthwise convolution Depthwise convolution is a special case of convolution, in which: * ``kernel_channels = 1`` (``== input_channels / groups``) * ``output_channels = channel_multiplier * input_channels`` * ``groups = input_channels`` * ``W``: ``[Kernel_depth, Kernel_height, Kernel_width, 1, channel_multiplier * input_channels]`` See Also -------- add_convolution, add_pooling, add_activation, add_batchnorm """ # Update spec version if necessary if self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 if isinstance(input_name, tuple): input_names = list(input_name) elif isinstance(input_name, list): input_names = input_name else: input_names = [input_name] # 3D convolution doesn't currently support 2-inputs if len(input_names) > 1: raise ValueError("3D convolution only supports 1 input.") spec_layer = self._add_generic_layer(name, input_names, [output_name]) # Set the layer params spec_layer_params = spec_layer.convolution3d spec_layer_params.isDeconvolution = is_deconv spec_layer_params.nGroups = groups spec_layer_params.outputChannels = output_channels spec_layer_params.inputChannels = input_channels spec_layer_params.kernelDepth = depth spec_layer_params.kernelHeight = height spec_layer_params.kernelWidth = width spec_layer_params.strideDepth = stride_depth spec_layer_params.strideHeight = stride_height spec_layer_params.strideWidth = stride_width if is_deconv and output_shape: spec_layer_params.outputShape.append(output_shape[0]) spec_layer_params.outputShape.append(output_shape[1]) spec_layer_params.outputShape.append(output_shape[2]) supported_padding_modes = {"CUSTOM", "VALID", "SAME"} if padding_mode.upper() not in supported_padding_modes: raise ValueError( "Unsupported padding mode: %s. Must be one of %s" % (padding_mode, supported_padding_modes) ) if padding_mode.upper() == "CUSTOM": spec_layer_params.customPaddingFront = padding_front spec_layer_params.customPaddingBack = padding_back spec_layer_params.customPaddingTop = padding_top spec_layer_params.customPaddingBottom = padding_bottom spec_layer_params.customPaddingLeft = padding_left spec_layer_params.customPaddingRight = padding_right spec_layer_params.paddingType = _NeuralNetwork_pb2.Convolution3DLayerParams.PaddingType.Value( padding_mode.upper() ) spec_layer_params.dilationDepth = dilation_depth spec_layer_params.dilationHeight = dilation_height spec_layer_params.dilationWidth = dilation_width # Weight alignment: MLModel Spec requires following weight arrangement: # is_deconv == False ==> (output_channels, kernel_channels, depth, height, width), where kernel_channel = input_channels / groups # is_deconv == True ==> (kernel_channels, output_channels / groups, height, width), where kernel_channel = input_channels if is_deconv: W = W.transpose((1, 0, 2, 3, 4)) # Assign weights weights = spec_layer_params.weights weights.floatValue.extend(W.flatten()) # Assign biases spec_layer_params.hasBias = has_bias if has_bias: bias = spec_layer_params.bias for f in range(output_channels): bias.floatValue.append(float(b[f])) return spec_layer
[docs] def add_pooling( self, name, height, width, stride_height, stride_width, layer_type, padding_type, input_name, output_name, exclude_pad_area=True, is_global=False, padding_top=0, padding_bottom=0, padding_left=0, padding_right=0, same_padding_asymmetry_mode="BOTTOM_RIGHT_HEAVY", ): """ Add a pooling layer to the model that performs spatial pooling. Refer to the ``PoolingLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. height: int Height of pooling region. width: int Width of pooling region. stride_height: int Stride along the height direction. stride_width: int Stride along the width direction. layer_type: str Type of pooling performed. Can either be ``'MAX'``, ``'AVERAGE'``, or ``'L2'``. padding_type: str Option for the type of padding and output blob shape. Can be either ``'VALID'``, ``'SAME'``, or ``'INCLUDE_LAST_PIXEL'``. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. exclude_pad_area: boolean Whether to exclude padded area in the ``'AVERAGE'`` pooling operation, default: true. This flag is only used with average pooling. - If True, the value of the padded area will be excluded. - If False, the padded area will be included. is_global: boolean Whether the pooling operation is global. Defaults to False. - If True, the pooling operation is global. The pooling region is of the same size of the input blob. Parameters ``height``, ``width``, ``stride_height``, and ``stride_width`` will be ignored. - If False, the pooling operation is not global. padding_top, padding_bottom, padding_left, padding_right: int Values of height (top, bottom) and width (left, right) padding to be used if padding type is ``"VALID"`` or ``"INCLUDE_LAST_PIXEL"``. same_padding_asymmetry_mode: str. Type of asymmetric padding to be used when ``padding_type = 'SAME'``. Can be either ``'BOTTOM_RIGHT_HEAVY'`` or ``'TOP_LEFT_HEAVY'``. See Also -------- add_pooling3d, add_convolution, add_activation """ # Create spec layer spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.pooling # Set the parameters spec_layer_params.type = _NeuralNetwork_pb2.PoolingLayerParams.PoolingType.Value( layer_type.upper() ) padding_type = ( padding_type.upper() if isinstance(padding_type, str) else padding_type ) same_padding_asymmetry_mode = ( same_padding_asymmetry_mode.upper() if isinstance(same_padding_asymmetry_mode, str) else same_padding_asymmetry_mode ) if padding_type == "VALID": height_border = spec_layer_params.valid.paddingAmounts.borderAmounts.add() height_border.startEdgeSize = padding_top height_border.endEdgeSize = padding_bottom width_border = spec_layer_params.valid.paddingAmounts.borderAmounts.add() width_border.startEdgeSize = padding_left width_border.endEdgeSize = padding_right elif padding_type == "SAME": if not ( same_padding_asymmetry_mode == "BOTTOM_RIGHT_HEAVY" or same_padding_asymmetry_mode == "TOP_LEFT_HEAVY" ): raise ValueError( "Invalid value %d of same_padding_asymmetry_mode parameter" % same_padding_asymmetry_mode ) spec_layer_params.same.asymmetryMode = _NeuralNetwork_pb2.SamePadding.SamePaddingMode.Value( same_padding_asymmetry_mode ) elif padding_type == "INCLUDE_LAST_PIXEL": if padding_top != padding_bottom or padding_left != padding_right: raise ValueError( "Only symmetric padding is supported with the INCLUDE_LAST_PIXEL padding type" ) spec_layer_params.includeLastPixel.paddingAmounts.append(padding_top) spec_layer_params.includeLastPixel.paddingAmounts.append(padding_left) else: raise ValueError("Unknown padding_type %s in pooling" % padding_type) spec_layer_params.kernelSize.append(height) spec_layer_params.kernelSize.append(width) spec_layer_params.stride.append(stride_height) spec_layer_params.stride.append(stride_width) spec_layer_params.avgPoolExcludePadding = exclude_pad_area spec_layer_params.globalPooling = is_global return spec_layer
[docs] def add_pooling3d( self, name, input_name, output_name, pooling_type, kernel_depth, kernel_height, kernel_width, stride_depth, stride_height, stride_width, padding_mode="valid", custom_padding_front=0, custom_padding_back=0, custom_padding_top=0, custom_padding_bottom=0, custom_padding_left=0, custom_padding_right=0, average_pooling_count_excludes_padding=False, ): """ Add a pooling layer to the model that performs spatial pooling across three dimensions. Refer to the ``Pooling3DLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. pooling_type: str Type of pooling performed. Can either be ``'MAX'`` OR ``'AVERAGE'``. kernel_depth: int Depth of the pooling region. kernel_height: int Height of pooling region. kernel_width: int Width of pooling region. stride_depth: int Stride along the depth direction stride_height: int Stride along the height direction. stride_width: int Stride along the width direction. padding_mode: str Option for the padding type and output blob shape. Can be ``'VALID'``, ``'SAME'``, or ``'CUSTOM'``. custom_padding_front: int Padding before the input in the depth direction. custom_padding_back: int Padding after the input in the depth direction. custom_padding_top: int Padding before the input in the height direction. custom_padding_bottom: int Padding after the input in the height direction. custom_padding_left: int Padding before the input in the width direction. custom_padding_right: int Padding after the input in the width direction. average_pooling_count_excludes_padding: boolean If true, exclude zeros from padding in average pooling. Can only be true for ``AVERAGE`` padding. See Also -------- add_pooling, add_global_pooling3d """ if self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.pooling3d spec_layer_params.type = _NeuralNetwork_pb2.Pooling3DLayerParams.PoolingType3D.Value( pooling_type.upper() ) spec_layer_params.kernelDepth = kernel_depth spec_layer_params.kernelHeight = kernel_height spec_layer_params.kernelWidth = kernel_width spec_layer_params.strideDepth = stride_depth spec_layer_params.strideHeight = stride_height spec_layer_params.strideWidth = stride_width supported_padding_modes = {"CUSTOM", "VALID", "SAME"} if padding_mode.upper() not in supported_padding_modes: raise ValueError( "Unsupported padding mode: %s. Must be one of %s" % (padding_mode, supported_padding_modes) ) if padding_mode.upper() == "CUSTOM": spec_layer_params.customPaddingFront = custom_padding_front spec_layer_params.customPaddingBack = custom_padding_back spec_layer_params.customPaddingTop = custom_padding_top spec_layer_params.customPaddingBottom = custom_padding_bottom spec_layer_params.customPaddingLeft = custom_padding_left spec_layer_params.customPaddingRight = custom_padding_right spec_layer_params.paddingType = _NeuralNetwork_pb2.Pooling3DLayerParams.Pooling3DPaddingType.Value( padding_mode.upper() ) spec_layer_params.countExcludePadding = average_pooling_count_excludes_padding return spec_layer
[docs] def add_global_pooling3d(self, name, input_name, output_name, pooling_type): """ Add a layer to pool three spatial dimensions down to one value. This behaves like a special case of Pooling3DLayerParams in which the Kernel is the size of the input and there is no padding. Refer to the ``GlobalPooling3DLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. pooling_type: str Type of pooling performed. Can either be ``'MAX'`` OR ``'AVERAGE'``. See Also -------- add_pooling, add_pooling3d """ if self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.globalPooling3d spec_layer_params.type = _NeuralNetwork_pb2.GlobalPooling3DLayerParams.GlobalPoolingType3D.Value( pooling_type.upper() ) return spec_layer
[docs] def add_padding( self, name, left=0, right=0, top=0, bottom=0, value=0, input_name="data", output_name="out", padding_type="constant", ): """ Add a padding layer to the model that performs padding along spatial dimensions. Refer to the ``PaddingLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. left: int Number of elements to be padded on the left side of the input blob. right: int Number of elements to be padded on the right side of the input blob. top: int Number of elements to be padded on the top of the input blob. bottom: int Number of elements to be padded on the bottom of the input blob. value: float Value of the elements padded. Used only when ``padding_type = 'constant'``. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. padding_type: str Type of the padding. Can be one of ``'constant'``, ``'reflection'``, or ``'replication'``. See Also -------- add_crop, add_convolution, add_pooling, add_constant_pad """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.padding # Set the parameters padding_type = ( padding_type.lower() if isinstance(padding_type, str) else padding_type ) if padding_type == "constant": spec_layer_params.constant.value = value elif padding_type == "reflection": spec_layer_params.reflection.MergeFromString(b"") elif padding_type == "replication": spec_layer_params.replication.MergeFromString(b"") else: raise ValueError("Unknown padding_type %s" % padding_type) height_border = spec_layer_params.paddingAmounts.borderAmounts.add() height_border.startEdgeSize = top height_border.endEdgeSize = bottom width_border = spec_layer_params.paddingAmounts.borderAmounts.add() width_border.startEdgeSize = left width_border.endEdgeSize = right return spec_layer
[docs] def add_crop( self, name, left, right, top, bottom, offset, input_names, output_name ): """ Add a cropping layer to the model. The cropping layer have two functional modes: - When it has 1 input blob, it crops the input blob based on the 4 parameters ``[left, right, top, bottom]``. - When it has 2 input blobs, it crops the first input blob based on the dimension of the second blob with an offset. Refer to the ``CropLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. left: int Number of elements to be cropped on the left side of the input blob. When the crop layer takes 2 inputs, this parameter is ignored. right: int Number of elements to be cropped on the right side of the input blob. When the crop layer takes 2 inputs, this parameter is ignored. top: int Number of elements to be cropped on the top of the input blob. When the crop layer takes 2 inputs, this parameter is ignored. bottom: int Number of elements to be cropped on the bottom of the input blob. When the crop layer takes 2 inputs, this parameter is ignored. offset: list of int Offset along the height and width directions when the crop layer takes 2 inputs. Must be a list of length 2. When the crop layer takes 1 input, this parameter is ignored. input_names: list of str The input blob names of this layer. Must be either a list of 1 string (1 input crop layer), or a list of 2 strings (2-input crop layer). output_name: str The output blob name of this layer. See Also -------- add_padding, add_convolution, add_pooling """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.crop # Set the parameters offset = [0, 0] if len(input_names) == 1 else offset spec_layer_params.offset.extend(offset) height_border = spec_layer_params.cropAmounts.borderAmounts.add() height_border.startEdgeSize = top height_border.endEdgeSize = bottom width_border = spec_layer_params.cropAmounts.borderAmounts.add() width_border.startEdgeSize = left width_border.endEdgeSize = right return spec_layer
[docs] def add_simple_rnn( self, name, W_h, W_x, b, hidden_size, input_size, activation, input_names, output_names, output_all=False, reverse_input=False, ): """ Add a simple recurrent layer to the model. Refer to the ``SimpleRecurrentLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. W_h: numpy.array Weights of the recurrent layer's hidden state. Must be of shape ``(hidden_size, hidden_size)``. W_x: numpy.array Weights of the recurrent layer's input. Must be of shape ``(hidden_size, input_size)``. b: numpy.array or None Bias of the recurrent layer's output. If ``None``, bias is ignored. Otherwise it must be of shape ``(hidden_size, )``. hidden_size: int Number of hidden units. This is equal to the number of channels of output shape. input_size: int Number of the number of channels of input shape. activation: str Activation function name. Can be one of the following option: [``'RELU'``, ``'TANH'``, ``'SIGMOID'``, ``'SCALED_TANH'``, ``'SIGMOID_HARD'``, ``'LINEAR'``]. See add_activation for more detailed description. input_names: list of str The input blob names list of this layer, in the order of ``[x, h_input]``. output_names: list of str The output blob names list of this layer, in the order of ``[y, h_output]``. output_all: boolean Whether the recurrent layer should output at every time step. - If False, the output is the result after the final state update. - If True, the output is a sequence, containing outputs at all time steps. reverse_input: boolean Whether the recurrent layer should process the input sequence in the reverse order. - If False, the input sequence order is not reversed. - If True, the input sequence order is reversed. See Also -------- add_activation, add_gru, add_unilstm, add_bidirlstm """ spec_layer = self._add_generic_layer(name, input_names, output_names) spec_layer_params = spec_layer.simpleRecurrent spec_layer_params.reverseInput = reverse_input # set the parameters spec_layer_params.inputVectorSize = input_size spec_layer_params.outputVectorSize = hidden_size if b is not None: spec_layer_params.hasBiasVector = True spec_layer_params.sequenceOutput = output_all activation_f = spec_layer_params.activation _set_recurrent_activation(activation_f, activation) # Write the weights spec_layer_params.weightMatrix.floatValue.extend(W_x.flatten()) spec_layer_params.recursionMatrix.floatValue.extend(W_h.flatten()) if b is not None: spec_layer_params.biasVector.floatValue.extend(b.flatten()) return spec_layer
[docs] def add_gru( self, name, W_h, W_x, b, hidden_size, input_size, input_names, output_names, activation="TANH", inner_activation="SIGMOID_HARD", output_all=False, reverse_input=False, ): """ Add a Gated-Recurrent Unit (GRU) layer to the model. Refer to the ``GRULayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. W_h: [numpy.array] List of recursion weight matrices. The ordering is ``[R_z, R_r, R_o]``, where ``R_z``, ``R_r`` and ``R_o`` are weight matrices at update gate, reset gate and output gate. The shapes of these matrices are ``(hidden_size, hidden_size)``. W_x: [numpy.array] List of input weight matrices. The ordering is ``[W_z, W_r, W_o]``, where ``W_z``, ``W_r``, and ``W_o`` are weight matrices at update gate, reset gate and output gate. The shapes of these matrices are ``(hidden_size, input_size)``. b: [numpy.array] or None List of biases of the GRU layer. The ordering is ``[b_z, b_r, b_o]``, where ``b_z``, ``b_r``, and ``b_o`` are biases at update gate, reset gate and output gate. If ``None``, biases are ignored. Otherwise the shapes of the biases are ``(hidden_size, )``. hidden_size: int Number of hidden units. This is equal to the number of channels of output shape. input_size: int Number of the number of channels of input shape. activation: str Activation function used at the output gate. Can be one of the following options: [``'RELU'``, ``'TANH'``, ``'SIGMOID'``, ``'SCALED_TANH'``, ``'SIGMOID_HARD'``, ``'LINEAR'``]. Defaults to ``'TANH'``. See add_activation for more detailed description. inner_activation: str Inner activation function used at update and reset gates. Can be one of the following options: [``'RELU'``, ``'TANH'``, ``'SIGMOID'``, ``'SCALED_TANH'``, ``'SIGMOID_HARD'``, ``'LINEAR'``]. Defaults to ``'SIGMOID_HARD'``. See add_activation for more detailed description. input_names: list of str The input blob names list of this layer, in the order of ``[x, h_input]``. output_names: list of str The output blob names list of this layer, in the order of ``[y, h_output]``. output_all: boolean Whether the recurrent layer should output at every time step. - If False, the output is the result after the final state update. - If True, the output is a sequence, containing outputs at all time steps. reverse_input: boolean Whether the recurrent layer should process the input sequence in the reverse order. - If False, the input sequence order is not reversed. - If True, the input sequence order is reversed. See Also -------- add_activation, add_simple_rnn, add_unilstm, add_bidirlstm """ spec_layer = self._add_generic_layer(name, input_names, output_names) spec_layer_params = spec_layer.gru # set the parameters spec_layer_params.inputVectorSize = input_size spec_layer_params.outputVectorSize = hidden_size if b is not None: spec_layer_params.hasBiasVectors = True spec_layer_params.sequenceOutput = output_all spec_layer_params.reverseInput = reverse_input activation_f = spec_layer_params.activations.add() activation_g = spec_layer_params.activations.add() _set_recurrent_activation(activation_f, inner_activation) _set_recurrent_activation(activation_g, activation) # Write the weights R_z, R_r, R_o = W_h W_z, W_r, W_o = W_x spec_layer_params.updateGateWeightMatrix.floatValue.extend(W_z.flatten()) spec_layer_params.resetGateWeightMatrix.floatValue.extend(W_r.flatten()) spec_layer_params.outputGateWeightMatrix.floatValue.extend(W_o.flatten()) spec_layer_params.updateGateRecursionMatrix.floatValue.extend(R_z.flatten()) spec_layer_params.resetGateRecursionMatrix.floatValue.extend(R_r.flatten()) spec_layer_params.outputGateRecursionMatrix.floatValue.extend(R_o.flatten()) if b is not None: b_z, b_r, b_o = b spec_layer_params.updateGateBiasVector.floatValue.extend(b_z.flatten()) spec_layer_params.resetGateBiasVector.floatValue.extend(b_r.flatten()) spec_layer_params.outputGateBiasVector.floatValue.extend(b_o.flatten()) return spec_layer
[docs] def add_unilstm( self, name, W_h, W_x, b, hidden_size, input_size, input_names, output_names, inner_activation="SIGMOID", cell_state_update_activation="TANH", output_activation="TANH", peep=None, output_all=False, forget_bias=False, coupled_input_forget_gate=False, cell_clip_threshold=50000.0, reverse_input=False, ): """ Add a Uni-directional LSTM layer to the model. Refer to the ``UniDirectionalLSTMLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. W_h: [numpy.array] List of recursion weight matrices. The ordering is [R_i, R_f, R_o, R_z], where R_i, R_f, R_o, R_z are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are (hidden_size, hidden_size). W_x: [numpy.array] List of input weight matrices. The ordering is [W_i, W_f, W_o, W_z], where W_i, W_f, W_o, W_z are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are (hidden_size, input_size). b: [numpy.array] or None List of biases. The ordering is [b_i, b_f, b_o, b_z], where b_i, b_f, b_o, b_z are biases at input gate, forget gate, output gate and cell gate. If ``None``, biases are ignored. Otherwise the shapes of the biases are (hidden_size, ). hidden_size: int Number of hidden units. This is equal to the number of channels of output shape. input_size: int Number of the number of channels of input shape. input_names: list of str The input blob names list of this layer, in the order of [x, h_input, c_input]. output_names: list of str The output blob names list of this layer, in the order of [y, h_output, c_output]. inner_activation: str Inner activation function used at input and forget gate. Can be one of the following option: ['RELU', 'TANH', 'SIGMOID', 'SCALED_TANH', 'SIGMOID_HARD', 'LINEAR']. cell_state_update_activation: str Cell state update activation function used at the cell state update gate. ['RELU', 'TANH', 'SIGMOID', 'SCALED_TANH', 'SIGMOID_HARD', 'LINEAR']. output_activation: str Activation function used at the output gate. Can be one of the following option: ['RELU', 'TANH', 'SIGMOID', 'SCALED_TANH', 'SIGMOID_HARD', 'LINEAR']. peep: [numpy.array] or None List of peephole vectors. The ordering is [p_i, p_f, p_o], where p_i, p_f, and p_o are peephole vectors at input gate, forget gate, output gate. The shapes of the peephole vectors are (hidden_size,). output_all: boolean Whether the LSTM layer should output at every time step. - If False, the output is the result after the final state update. - If True, the output is a sequence, containing outputs at all time steps. forget_bias: boolean If True, a vector of 1s is added to forget gate bias. coupled_input_forget_gate: boolean If True, the input gate and forget gate is coupled. i.e. forget gate is not used. cell_clip_threshold: float The limit on the maximum and minimum values on the cell state. If not provided, it is defaulted to 50.0. reverse_input: boolean Whether the LSTM layer should process the input sequence in the reverse order. - If False, the input sequence order is not reversed. - If True, the input sequence order is reversed. See Also -------- add_activation, add_simple_rnn, add_gru, add_bidirlstm """ spec_layer = self._add_generic_layer(name, input_names, output_names) spec_layer_params = spec_layer.uniDirectionalLSTM params = spec_layer_params.params weight_params = spec_layer_params.weightParams # set the parameters spec_layer_params.inputVectorSize = input_size spec_layer_params.outputVectorSize = hidden_size params.sequenceOutput = output_all params.forgetBias = False if b is not None: params.hasBiasVectors = True if peep is not None: params.hasPeepholeVectors = True params.coupledInputAndForgetGate = coupled_input_forget_gate params.cellClipThreshold = cell_clip_threshold params.forgetBias = forget_bias spec_layer_params.reverseInput = reverse_input activation_f = spec_layer_params.activations.add() activation_g = spec_layer_params.activations.add() activation_h = spec_layer_params.activations.add() _set_recurrent_activation(activation_f, inner_activation) _set_recurrent_activation(activation_g, cell_state_update_activation) _set_recurrent_activation(activation_h, output_activation) # Write the weights R_i, R_f, R_o, R_z = W_h W_i, W_f, W_o, W_z = W_x weight_params.inputGateWeightMatrix.floatValue.extend(W_i.flatten()) weight_params.forgetGateWeightMatrix.floatValue.extend(W_f.flatten()) weight_params.outputGateWeightMatrix.floatValue.extend(W_o.flatten()) weight_params.blockInputWeightMatrix.floatValue.extend(W_z.flatten()) weight_params.inputGateRecursionMatrix.floatValue.extend(R_i.flatten()) weight_params.forgetGateRecursionMatrix.floatValue.extend(R_f.flatten()) weight_params.outputGateRecursionMatrix.floatValue.extend(R_o.flatten()) weight_params.blockInputRecursionMatrix.floatValue.extend(R_z.flatten()) if b is not None: b_i, b_f, b_o, b_z = b weight_params.inputGateBiasVector.floatValue.extend(b_i.flatten()) weight_params.forgetGateBiasVector.floatValue.extend(b_f.flatten()) weight_params.outputGateBiasVector.floatValue.extend(b_o.flatten()) weight_params.blockInputBiasVector.floatValue.extend(b_z.flatten()) if peep is not None: p_i, p_f, p_o = peep weight_params.inputGatePeepholeVector.floatValue.extend(p_i.flatten()) weight_params.forgetGatePeepholeVector.floatValue.extend(p_f.flatten()) weight_params.outputGatePeepholeVector.floatValue.extend(p_o.flatten()) return spec_layer
[docs] def add_bidirlstm( self, name, W_h, W_x, b, W_h_back, W_x_back, b_back, hidden_size, input_size, input_names, output_names, inner_activation="SIGMOID", cell_state_update_activation="TANH", output_activation="TANH", peep=None, peep_back=None, output_all=False, forget_bias=False, coupled_input_forget_gate=False, cell_clip_threshold=50000.0, ): """ Add a Bi-directional LSTM layer to the model. Refer to the ``BiDirectionalLSTMLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. W_h: [numpy.array] List of recursion weight matrices for the forward layer. The ordering is ``[R_i, R_f, R_o, R_z]``, where ``R_i``, ``R_f``, ``R_o``, and ``R_z`` are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are ``(hidden_size, hidden_size)``. W_x: [numpy.array] List of input weight matrices for the forward layer. The ordering is ``[W_i, W_f, W_o, W_z]``, where ``W_i``, ``W_f``, ``W_o``, and ``W_z`` are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are ``(hidden_size, input_size)``. b: [numpy.array] List of biases for the forward layer. The ordering is ``[b_i, b_f, b_o, b_z]``, where ``b_i``, ``b_f``, ``b_o``, and ``b_z`` are biases at input gate, forget gate, output gate and cell gate. If ``None``, biases are ignored. Otherwise the shapes of the biases are ``(hidden_size, )``. W_h_back: [numpy.array] List of recursion weight matrices for the backward layer. The ordering is ``[R_i, R_f, R_o, R_z]``, where ``R_i``, ``R_f``, ``R_o``, and ``R_z`` are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are ``(hidden_size, hidden_size)``. W_x_back: [numpy.array] List of input weight matrices for the backward layer. The ordering is `[W_i, W_f, W_o, W_z]``, where ``W_i``, ``W_f``, ``W_o``, and ``W_z`` are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are ``(hidden_size, input_size)``. b_back: [numpy.array] List of biases for the backward layer. The ordering is ``[b_i, b_f, b_o, b_z]``, where ``b_i``, ``b_f``, ``b_o``, and ``b_z`` are biases at input gate, forget gate, output gate and cell gate. The shapes of the biases ``(hidden_size)``. hidden_size: int Number of hidden units. This is equal to the number of channels of output shape. input_size: int Number of the number of channels of input shape. input_names: list of str The input blob names of this layer, in the order of ``[x, h_input, c_input, h_reverse_input, c_reverse_input]``. output_names: list of str The output blob names of this layer, in the order of ``[y, h_output, c_output, h_reverse_output, c_reverse_output]``. inner_activation: str Inner activation function used at input and forget gate. Can be one of the following options: [``'RELU'``, ``'TANH'``, ``'SIGMOID'``, ``'SCALED_TANH'``, ``'SIGMOID_HARD'``, ``'LINEAR'``]. Defaults to ``'SIGMOID'``. cell_state_update_activation: str Cell state update activation function used at the cell state update gate. Can be one of the following options: [``'RELU'``, ``'TANH'``, ``'SIGMOID'``, ``'SCALED_TANH'``, ``'SIGMOID_HARD'``, ``'LINEAR'``]. Defaults to ``'TANH'``. output_activation: str Activation function used at the output gate. Can be one of the following options: [``'RELU'``, ``'TANH'``, ``'SIGMOID'``, ``'SCALED_TANH'``, ``'SIGMOID_HARD'``, ``'LINEAR'``]. Defaults to ``'TANH'``. peep: [numpy.array] or None List of peephole vectors for the forward layer. The ordering is ``[p_i, p_f, p_o]``, where ``p_i``, ``p_f``, and ``p_o`` are peephole vectors at input gate, forget gate, and output gate. The shapes of the peephole vectors are ``(hidden_size,)``. Defaults to ``None``. peep_back: [numpy.array] or None List of peephole vectors for the backward layer. The ordering is ``[p_i, p_f, p_o]``, where ``p_i``, ``p_f``, and ``p_o`` are peephole vectors at input gate, forget gate, and output gate. The shapes of the peephole vectors are ``(hidden_size,)``. Defaults to ``None``. output_all: boolean Whether the LSTM layer should output at every time step. Defaults to ``False``. - If ``False``, the output is the result after the final state update. - If ``True``, the output is a sequence, containing outputs at all time steps. forget_bias: boolean If ``True``, a vector of 1s is added to forget gate bias. Defaults to ``False``. coupled_input_forget_gate: boolean If ``True``, the input gate and forget gate is coupled. That is, the forget gate is not used. Defaults to ``False``. cell_clip_threshold: float The limit on the maximum and minimum values on the cell state. Defaults to 50.0. See Also -------- add_activation, add_simple_rnn, add_unilstm, add_bidirlstm """ spec_layer = self._add_generic_layer(name, input_names, output_names) spec_layer_params = spec_layer.biDirectionalLSTM params = spec_layer_params.params weight_params = spec_layer_params.weightParams.add() weight_params_back = spec_layer_params.weightParams.add() # set the parameters spec_layer_params.inputVectorSize = input_size spec_layer_params.outputVectorSize = hidden_size if b is not None: params.hasBiasVectors = True params.sequenceOutput = output_all params.forgetBias = forget_bias if peep is not None: params.hasPeepholeVectors = True params.coupledInputAndForgetGate = coupled_input_forget_gate params.cellClipThreshold = cell_clip_threshold # set activations activation_f = spec_layer_params.activationsForwardLSTM.add() activation_g = spec_layer_params.activationsForwardLSTM.add() activation_h = spec_layer_params.activationsForwardLSTM.add() _set_recurrent_activation(activation_f, inner_activation) _set_recurrent_activation(activation_g, cell_state_update_activation) _set_recurrent_activation(activation_h, output_activation) activation_f_back = spec_layer_params.activationsBackwardLSTM.add() activation_g_back = spec_layer_params.activationsBackwardLSTM.add() activation_h_back = spec_layer_params.activationsBackwardLSTM.add() _set_recurrent_activation(activation_f_back, inner_activation) _set_recurrent_activation(activation_g_back, cell_state_update_activation) _set_recurrent_activation(activation_h_back, output_activation) # Write the forward lstm weights R_i, R_f, R_o, R_z = W_h W_i, W_f, W_o, W_z = W_x weight_params.inputGateWeightMatrix.floatValue.extend(W_i.flatten()) weight_params.forgetGateWeightMatrix.floatValue.extend(W_f.flatten()) weight_params.outputGateWeightMatrix.floatValue.extend(W_o.flatten()) weight_params.blockInputWeightMatrix.floatValue.extend(W_z.flatten()) weight_params.inputGateRecursionMatrix.floatValue.extend(R_i.flatten()) weight_params.forgetGateRecursionMatrix.floatValue.extend(R_f.flatten()) weight_params.outputGateRecursionMatrix.floatValue.extend(R_o.flatten()) weight_params.blockInputRecursionMatrix.floatValue.extend(R_z.flatten()) if b is not None: b_i, b_f, b_o, b_z = b weight_params.inputGateBiasVector.floatValue.extend(b_i.flatten()) weight_params.forgetGateBiasVector.floatValue.extend(b_f.flatten()) weight_params.outputGateBiasVector.floatValue.extend(b_o.flatten()) weight_params.blockInputBiasVector.floatValue.extend(b_z.flatten()) if peep is not None: p_i, p_f, p_o = peep weight_params.inputGatePeepholeVector.floatValue.extend(p_i.flatten()) weight_params.forgetGatePeepholeVector.floatValue.extend(p_f.flatten()) weight_params.outputGatePeepholeVector.floatValue.extend(p_o.flatten()) # Write the backward lstm weights R_i, R_f, R_o, R_z = W_h_back W_i, W_f, W_o, W_z = W_x_back weight_params_back.inputGateWeightMatrix.floatValue.extend(W_i.flatten()) weight_params_back.forgetGateWeightMatrix.floatValue.extend(W_f.flatten()) weight_params_back.outputGateWeightMatrix.floatValue.extend(W_o.flatten()) weight_params_back.blockInputWeightMatrix.floatValue.extend(W_z.flatten()) weight_params_back.inputGateRecursionMatrix.floatValue.extend(R_i.flatten()) weight_params_back.forgetGateRecursionMatrix.floatValue.extend(R_f.flatten()) weight_params_back.outputGateRecursionMatrix.floatValue.extend(R_o.flatten()) weight_params_back.blockInputRecursionMatrix.floatValue.extend(R_z.flatten()) if b_back is not None: b_i, b_f, b_o, b_z = b_back weight_params_back.inputGateBiasVector.floatValue.extend(b_i.flatten()) weight_params_back.forgetGateBiasVector.floatValue.extend(b_f.flatten()) weight_params_back.outputGateBiasVector.floatValue.extend(b_o.flatten()) weight_params_back.blockInputBiasVector.floatValue.extend(b_z.flatten()) if peep_back is not None: p_i, p_f, p_o = peep_back weight_params_back.inputGatePeepholeVector.floatValue.extend(p_i.flatten()) weight_params_back.forgetGatePeepholeVector.floatValue.extend(p_f.flatten()) weight_params_back.outputGatePeepholeVector.floatValue.extend(p_o.flatten()) return spec_layer
[docs] def add_flatten(self, name, mode, input_name, output_name): """ Add a flatten layer. Only flattens the channel, height and width axis. Leaves the sequence axis as is. Refer to the ``FlattenLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. mode: int - If mode == 0, the flatten layer is in CHANNEL_FIRST mode. - If mode == 1, the flatten layer is in CHANNEL_LAST mode. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_permute, add_reshape """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.flatten # Set the parameters if mode == 0: spec_layer_params.mode = _NeuralNetwork_pb2.FlattenLayerParams.FlattenOrder.Value( "CHANNEL_FIRST" ) elif mode == 1: spec_layer_params.mode = _NeuralNetwork_pb2.FlattenLayerParams.FlattenOrder.Value( "CHANNEL_LAST" ) else: raise NotImplementedError("Unknown flatten mode %d " % mode) return spec_layer
[docs] def add_slice( self, name, input_name, output_name, axis, start_index=0, end_index=-1, stride=1 ): """ Add a slice layer. Equivalent to to numpy slice [start_index:end_index:stride], start_index is included, while end_index is exclusive. Refer to the ``SliceLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axis: str axis along which input is sliced. allowed values: 'channel', 'height', 'width' start_index: int must be non-negative. end_index: int negative indexing is supported. stride: int must be positive. See Also -------- add_permute, add_reshape """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.slice # Set the parameters if start_index < 0: raise ValueError( "Invalid start_index value %d. Must be non-negative." % start_index ) if stride < 1: raise ValueError("Invalid stride value %d. Must be positive." % stride) spec_layer_params.startIndex = start_index spec_layer_params.endIndex = end_index spec_layer_params.stride = stride axis = axis.lower() if isinstance(axis, str) else axis if axis == "channel": spec_layer_params.axis = _NeuralNetwork_pb2.SliceLayerParams.SliceAxis.Value( "CHANNEL_AXIS" ) elif axis == "height": spec_layer_params.axis = _NeuralNetwork_pb2.SliceLayerParams.SliceAxis.Value( "HEIGHT_AXIS" ) elif axis == "width": spec_layer_params.axis = _NeuralNetwork_pb2.SliceLayerParams.SliceAxis.Value( "WIDTH_AXIS" ) else: raise NotImplementedError("Unsupported Slice axis %s " % axis) return spec_layer
[docs] def add_slice_by_size(self, name, input_names, output_name, axis, size): """ Add a slice layer. Equivalent to to numpy slice [start_index: start_index+size], Input is list of str which is [input_tensor, begin_id]. Assume input_tensor has shape (2, 3, 4), and axis=1, size=2. This would produce input_tensor[:, begin_id:begin_id+2, :] Refer to the ``SliceBySizeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. axis: int axis along which input is sliced. size: int The size of which input will be taken See Also -------- add_slice, add_slice_static, add_slice_dynamic """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.sliceBySize if size < 1: raise ValueError("Invalid size value %d. Must be positive." % size) spec_layer_params.axis = axis spec_layer_params.size = size return spec_layer
[docs] def add_reorganize_data( self, name, input_name, output_name, mode="SPACE_TO_DEPTH", block_size=2 ): """ Add a data reorganization layer of type "SPACE_TO_DEPTH" or "DEPTH_TO_SPACE". Refer to the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. mode: str - If mode == 'SPACE_TO_DEPTH': data is moved from the spatial to the channel dimension. Input is spatially divided into non-overlapping blocks of size block_size X block_size and data from each block is moved to the channel dimension. Output CHW dimensions are: [C * block_size * block_size, H/block_size, C/block_size]. - If mode == 'DEPTH_TO_SPACE': data is moved from the channel to the spatial dimension. Reverse of the operation 'SPACE_TO_DEPTH'. Output CHW dimensions are: [C/(block_size * block_size), H * block_size, C * block_size]. - If mode == 'PIXEL_SHUFFLE': data is moved from the channel to the spatial dimension. Reverse of the operation 'SPACE_TO_DEPTH'. Output CHW dimensions are: [C/(block_size * block_size), H * block_size, C * block_size]. block_size: int Must be greater than 1. Must divide H and W, when mode is 'SPACE_TO_DEPTH'. (block_size * block_size) must divide C when mode is 'DEPTH_TO_SPACE' or 'PIXEL_SHUFFLE'. See Also -------- add_flatten, add_reshape """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reorganizeData # Set the parameters if block_size < 2: raise ValueError( "Invalid block_size value %d. Must be greater than 1." % block_size ) spec_layer_params.blockSize = block_size mode = mode.upper() if isinstance(mode, str) else mode if mode == "SPACE_TO_DEPTH": spec_layer_params.mode = _NeuralNetwork_pb2.ReorganizeDataLayerParams.ReorganizationType.Value( "SPACE_TO_DEPTH" ) elif mode == "DEPTH_TO_SPACE": spec_layer_params.mode = _NeuralNetwork_pb2.ReorganizeDataLayerParams.ReorganizationType.Value( "DEPTH_TO_SPACE" ) elif mode == "PIXEL_SHUFFLE": if self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 spec_layer_params.mode = _NeuralNetwork_pb2.ReorganizeDataLayerParams.ReorganizationType.Value( "PIXEL_SHUFFLE" ) else: raise NotImplementedError("Unknown reorganization mode %s." % mode) return spec_layer
[docs] def add_batchnorm( self, name, channels, gamma, beta, mean=None, variance=None, input_name="data", output_name="out", compute_mean_var=False, instance_normalization=False, epsilon=1e-5, ): """ Add a batch normalization layer. Batch normalization operation is defined as: ``y = gamma * (x - mean) / sqrt(variance + epsilon) + beta`` Refer to the ``BatchnormLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. channels: int Number of channels of the input blob. gamma: numpy.array Values of gamma. Must be numpy array of shape ``(channels, )``. beta: numpy.array Values of beta. Must be numpy array of shape ``(channels, )``. mean: numpy.array Means of the input blob on each channel. Must be numpy array of shape ``(channels, )``. variance: Variances of the input blob on each channel. Must be numpy array of shape ``(channels, )``. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. compute_mean_var: bool Set to ``True`` if mean and variance is to be computed from the input data. instance_normalization: bool Set compute_mean_var and this to ``True`` to perform instance normalization. That is, mean and variance are computed from the single input instance. epsilon: float Value of epsilon. Defaults to ``1e-5`` if not specified. See Also -------- add_convolution, add_pooling, add_inner_product """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.batchnorm # Set the parameters spec_layer_params.channels = channels spec_layer_params.gamma.floatValue.extend(gamma.flatten()) spec_layer_params.beta.floatValue.extend(beta.flatten()) spec_layer_params.epsilon = epsilon spec_layer_params.computeMeanVar = compute_mean_var spec_layer_params.instanceNormalization = instance_normalization if compute_mean_var: if not instance_normalization: raise NotImplementedError( "Batch-instance norm is currently not supported" ) if not compute_mean_var: spec_layer_params.mean.floatValue.extend(mean.flatten()) spec_layer_params.variance.floatValue.extend(variance.flatten()) return spec_layer
[docs] def add_permute(self, name, dim, input_name, output_name): """ Add a permute layer. Assumes that the input has dimensions in the order [Seq, C, H, W] Refer to the ``PermuteLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. dim: tuple The order in which to permute the input dimensions = [seq,C,H,W]. Must have length 4 and a permutation of ``[0, 1, 2, 3]``. examples: Lets say input has shape: [seq, C, H, W]. If ``dim`` is set to ``[0, 3, 1, 2]``, then the output has shape ``[W,C,H]`` and has the same sequence length that of the input. If ``dim`` is set to ``[3, 1, 2, 0]``, and the input is a sequence of data with length ``Seq`` and shape ``[C, 1, 1]``, then the output is a unit sequence of data with shape ``[C, 1, Seq]``. If ``dim`` is set to ``[0, 3, 2, 1]``, the output is a reverse of the input: ``[C, H, W] -> [W, H, C]``. If ``dim`` is not set, or is set to ``[0, 1, 2, 3]``, the output is the same as the input. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_flatten, add_reshape """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.permute spec_layer_params.axis.extend(list(dim)) if len(dim) != 4: raise ValueError("Length of the 'dim' parameter must be equal to 4") return spec_layer
[docs] def add_reshape(self, name, input_name, output_name, target_shape, mode): """ Add a reshape layer. Refer to the ``ReshapeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. target_shape: tuple Shape of the output blob. The product of target_shape must be equal to the shape of the input blob. Can be either length 3 (C,H,W) or length 4 (Seq,C,H,W). mode: int - If mode == 0, the reshape layer is in CHANNEL_FIRST mode. - If mode == 1, the reshape layer is in CHANNEL_LAST mode. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_flatten, add_permute """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reshape spec_layer_params.targetShape.extend(target_shape) if mode == 0: spec_layer_params.mode = _NeuralNetwork_pb2.ReshapeLayerParams.ReshapeOrder.Value( "CHANNEL_FIRST" ) else: spec_layer_params.mode = _NeuralNetwork_pb2.ReshapeLayerParams.ReshapeOrder.Value( "CHANNEL_LAST" ) if len(target_shape) != 4 and len(target_shape) != 3: raise ValueError( "Length of the 'target-shape' parameter must be equal to 3 or 4" ) self.rank_dict[output_name] = len(target_shape) return spec_layer
[docs] def add_reduce(self, name, input_name, output_name, axis, mode, epsilon=1e-6): """ Add a reduce layer. Applies the function specified by the parameter mode, along dimension(s) specified by the parameter axis. Refer to the ``ReduceLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axis: str dimensions along which the reduction operation is applied. Allowed values: 'CHW', 'HW', 'C', 'H', 'W' mode: str Reduction operation to be applied. Allowed values: 'sum', 'avg', 'prod', 'logsum', 'sumsquare', 'L1', 'L2', 'max', 'min', 'argmax'. 'argmax' is only supported with axis values 'C', 'H' and 'W'. epsilon: float number that is added to the input when 'logsum' function is applied. See Also -------- add_activation """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reduce spec_layer_params.epsilon = epsilon mode = mode.lower() if isinstance(mode, str) else mode if mode == "sum": spec_layer_params.mode = _NeuralNetwork_pb2.ReduceLayerParams.ReduceOperation.Value( "SUM" ) elif mode == "avg": spec_layer_params.mode = _NeuralNetwork_pb2.ReduceLayerParams.ReduceOperation.Value( "AVG" ) elif mode == "prod": spec_layer_params.mode = _NeuralNetwork_pb2.ReduceLayerParams.ReduceOperation.Value( "PROD" ) elif mode == "logsum": spec_layer_params.mode = _NeuralNetwork_pb2.ReduceLayerParams.ReduceOperation.Value( "LOGSUM" ) elif mode == "sumsquare": spec_layer_params.mode = _NeuralNetwork_pb2.ReduceLayerParams.ReduceOperation.Value( "SUMSQUARE" ) elif mode == "l1": spec_layer_params.mode = _NeuralNetwork_pb2.ReduceLayerParams.ReduceOperation.Value( "L1" ) elif mode == "l2": spec_layer_params.mode = _NeuralNetwork_pb2.ReduceLayerParams.ReduceOperation.Value( "L2" ) elif mode == "max": spec_layer_params.mode = _NeuralNetwork_pb2.ReduceLayerParams.ReduceOperation.Value( "MAX" ) elif mode == "min": spec_layer_params.mode = _NeuralNetwork_pb2.ReduceLayerParams.ReduceOperation.Value( "MIN" ) elif mode == "argmax": spec_layer_params.mode = _NeuralNetwork_pb2.ReduceLayerParams.ReduceOperation.Value( "ARGMAX" ) else: raise NotImplementedError("Unknown reduction operation %s." % mode) axis = axis.upper() if isinstance(axis, str) else axis if axis == "CHW": spec_layer_params.axis = _NeuralNetwork_pb2.ReduceLayerParams.ReduceAxis.Value( "CHW" ) elif axis == "HW": spec_layer_params.axis = _NeuralNetwork_pb2.ReduceLayerParams.ReduceAxis.Value( "HW" ) elif axis == "C": spec_layer_params.axis = _NeuralNetwork_pb2.ReduceLayerParams.ReduceAxis.Value( "C" ) elif axis == "H": spec_layer_params.axis = _NeuralNetwork_pb2.ReduceLayerParams.ReduceAxis.Value( "H" ) elif axis == "W": spec_layer_params.axis = _NeuralNetwork_pb2.ReduceLayerParams.ReduceAxis.Value( "W" ) else: raise NotImplementedError("Unknown reduction axis %s." % axis) return spec_layer
[docs] def add_lrn(self, name, input_name, output_name, alpha, beta, local_size, k=1.0): """ Add a LRN (local response normalization) layer. Supports "across" channels normalization. Refer to the ``LRNLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. alpha: float multiplicative constant in the denominator. beta: float exponent of the normalizing term in the denominator. k: float bias term in the denominator. Must be positive. local_size: int size of the neighborhood along the channel axis. See Also -------- add_l2_normalize, add_mvn """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.lrn spec_layer_params.alpha = alpha spec_layer_params.beta = beta spec_layer_params.localSize = local_size spec_layer_params.k = k return spec_layer
[docs] def add_mvn( self, name, input_name, output_name, across_channels=True, normalize_variance=True, epsilon=1e-5, ): """ Add an MVN (mean variance normalization) layer. Computes mean, variance and normalizes the input. Refer to the ``MeanVarianceNormalizeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. across_channels: boolean If False, each channel plane is normalized separately If True, mean/variance is computed across all C, H and W dimensions normalize_variance: boolean If False, only mean subtraction is performed. epsilon: float small bias to avoid division by zero. See Also -------- add_l2_normalize, add_lrn """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.mvn spec_layer_params.acrossChannels = across_channels spec_layer_params.normalizeVariance = normalize_variance spec_layer_params.epsilon = epsilon return spec_layer
[docs] def add_l2_normalize(self, name, input_name, output_name, epsilon=1e-5): """ Add L2 normalize layer. Normalizes the input by the L2 norm, i.e. divides by the the square root of the sum of squares of all elements of the input along C, H and W dimensions. Refer to the ``L2NormalizeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. epsilon: float small bias to avoid division by zero. See Also -------- add_mvn, add_lrn """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.l2normalize spec_layer_params.epsilon = epsilon return spec_layer
[docs] def add_unary( self, name, input_name, output_name, mode, alpha=1.0, shift=0, scale=1.0, epsilon=None, ): """ Add a Unary layer. Applies the specified function (mode) to all the elements of the input. Prior to the application of the function the input can be scaled and shifted by using the 'scale', 'shift' parameters. Refer to the ``UnaryFunctionLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. mode: str Unary function. Allowed values: 'sqrt', 'rsqrt', 'inverse', 'power', 'exp', 'log', 'abs', threshold'. alpha: float constant used in with modes 'power' and 'threshold'. shift, scale: float input is modified by scale and shift prior to the application of the unary function. epsilon: float small bias to prevent division by zero. See Also -------- add_activation """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.unary if epsilon is None: # Use the default value of epsilon to be 1e-4, instead of 1e-6, if mode = "rsqrt" or "inverse" if mode == "inverse" or mode == "rsqrt": epsilon = 1e-4 elif mode == "log": epsilon = 1e-45 else: epsilon = 1e-6 spec_layer_params.epsilon = epsilon spec_layer_params.alpha = alpha spec_layer_params.shift = shift spec_layer_params.scale = scale mode = mode.lower() if isinstance(mode, str) else mode if mode == "sqrt": spec_layer_params.type = _NeuralNetwork_pb2.UnaryFunctionLayerParams.Operation.Value( "SQRT" ) elif mode == "rsqrt": spec_layer_params.type = _NeuralNetwork_pb2.UnaryFunctionLayerParams.Operation.Value( "RSQRT" ) elif mode == "inverse": spec_layer_params.type = _NeuralNetwork_pb2.UnaryFunctionLayerParams.Operation.Value( "INVERSE" ) elif mode == "power": spec_layer_params.type = _NeuralNetwork_pb2.UnaryFunctionLayerParams.Operation.Value( "POWER" ) elif mode == "exp": spec_layer_params.type = _NeuralNetwork_pb2.UnaryFunctionLayerParams.Operation.Value( "EXP" ) elif mode == "log": spec_layer_params.type = _NeuralNetwork_pb2.UnaryFunctionLayerParams.Operation.Value( "LOG" ) elif mode == "abs": spec_layer_params.type = _NeuralNetwork_pb2.UnaryFunctionLayerParams.Operation.Value( "ABS" ) elif mode == "threshold": spec_layer_params.type = _NeuralNetwork_pb2.UnaryFunctionLayerParams.Operation.Value( "THRESHOLD" ) else: raise NotImplementedError("Unknown unary function %s " % mode) return spec_layer
[docs] def add_split(self, name, input_name, output_names): """ Add a split layer that uniformly splits the input along the channel dimension to produce multiple outputs. Refer to the ``SplitLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_names: list of str List of output blob names of this layer. See Also -------- add_elementwise """ spec_layer = self._add_generic_layer(name, [input_name], output_names) spec_layer_params = spec_layer.split spec_layer_params.nOutputs = len(output_names) return spec_layer
[docs] def add_load_constant(self, name, output_name, constant_value, shape): """ Add a load constant layer. Refer to the ``LoadConstantLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. output_name: str The output blob name of this layer. constant_value: numpy.array value of the constant as a numpy array. shape: list of int or tuple of int List of ints representing the shape of the constant. Must be of length 3: [C,H,W] See Also -------- add_elementwise """ spec_layer = self._add_generic_layer(name, [], [output_name]) spec_layer_params = spec_layer.loadConstant data = spec_layer_params.data data.floatValue.extend(constant_value.flatten()) spec_layer_params.shape.extend(shape) self.rank_dict[output_name] = 5 if len(data.floatValue) != _np.prod(shape): raise ValueError( "Dimensions of 'shape' do not match the size of the provided constant" ) if not self._disable_rank5_shape_mapping: if len(shape) != 3: raise ValueError("'shape' must be of length 3") return spec_layer
[docs] def add_custom(self, name, input_names, output_names, custom_proto_spec=None): """ Add a custom layer. Refer to the ``CustomLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names to this layer. output_names: list of str The output blob names from this layer. custom_proto_spec: CustomLayerParams A protobuf CustomLayerParams message. This can also be left blank and filled in later. """ # custom layers require a newer specification version from coremltools import _MINIMUM_CUSTOM_LAYER_SPEC_VERSION if self.spec: self.spec.specificationVersion = max( self.spec.specificationVersion, _MINIMUM_CUSTOM_LAYER_SPEC_VERSION ) spec_layer = self._add_generic_layer(name, input_names, output_names) spec_layer.custom.MergeFromString(b"") if custom_proto_spec: spec_layer.custom.CopyFrom(custom_proto_spec) return spec_layer
[docs] def add_resize_bilinear( self, name, input_name, output_name, target_height=1, target_width=1, mode="ALIGN_ENDPOINTS_MODE", ): """ Add a resize bilinear layer to the model. A layer that resize the input to a given spatial size using bilinear interpolation. Refer to the ``ResizeBilinearLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. target_height: int Output height dimension. target_width: int Output width dimension. mode: str Following values are supported: 'STRICT_ALIGN_ENDPOINTS_MODE', 'ALIGN_ENDPOINTS_MODE', 'UPSAMPLE_MODE', 'ROI_ALIGN_MODE'. This parameter determines the sampling grid used for bilinear interpolation. See Also -------- add_upsample """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.resizeBilinear spec_layer_params.targetSize.append(target_height) spec_layer_params.targetSize.append(target_width) mode = mode.upper() if isinstance(mode, str) else mode if mode == "ALIGN_ENDPOINTS_MODE": spec_layer_params.mode.samplingMethod = _NeuralNetwork_pb2.SamplingMode.Method.Value( "ALIGN_ENDPOINTS_MODE" ) elif mode == "STRICT_ALIGN_ENDPOINTS_MODE": spec_layer_params.mode.samplingMethod = _NeuralNetwork_pb2.SamplingMode.Method.Value( "STRICT_ALIGN_ENDPOINTS_MODE" ) elif mode == "UPSAMPLE_MODE": spec_layer_params.mode.samplingMethod = _NeuralNetwork_pb2.SamplingMode.Method.Value( "UPSAMPLE_MODE" ) elif mode == "ROI_ALIGN_MODE": spec_layer_params.mode.samplingMethod = _NeuralNetwork_pb2.SamplingMode.Method.Value( "ROI_ALIGN_MODE" ) else: raise ValueError("Unsupported resize bilinear mode %s" % mode) return spec_layer
[docs] def add_crop_resize( self, name, input_names, output_name, target_height=1, target_width=1, mode="STRICT_ALIGN_ENDPOINTS_MODE", normalized_roi=False, box_indices_mode="CORNERS_HEIGHT_FIRST", spatial_scale=1.0, ): """ Add a crop resize layer to the model. A layer that extracts cropped spatial patches or RoIs (regions of interest) from the input and resizes them to a pre-specified size using bilinear interpolation. Note that RoI Align layer can be implemented with this layer followed by a pooling layer. Refer to the ``CropResizeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str * Must be a list of two names: image feature map and crop indices/RoI input. * First input corresponds to a blob with shape ``[1, Batch, C, H_in, W_in]``. This represents a batch of input image feature data with ``C`` channels. * The second input shape must be ``[N, 1, 4, 1, 1]`` or ``[N, 1, 5, 1, 1]``. This represents the bounding box coordinates for ``N`` patches/RoIs. * ``N``: number of patches/RoIs to be extracted. * If RoI shape = ``[N, 1, 4, 1, 1]``, the channel axis corresponds to the four coordinates specifying the bounding box. All the N~ RoIs are extracted from all the batches of the input. * If RoI shape = ``[N, 1, 5, 1, 1]``, the first element of the channel axis specifies the input batch id from which to extract the RoI and must be in the interval ``[0, Batch - 1]``. That is, ``n`` -th RoI is extracted from the ``RoI[n,0,0,0]`` -th input batch id. The last four elements of the channel axis specify the bounding box coordinates. output_name: str The output blob name of this layer. target_height: int Output height dimension. target_width: int Output width dimension. mode: str * The following values are supported: ``'STRICT_ALIGN_ENDPOINTS_MODE'``, ``'ALIGN_ENDPOINTS_MODE'``, ``'UPSAMPLE_MODE'``, ``'ROI_ALIGN_MODE'``. * This parameter determines the sampling grid used for bilinear interpolation. normalized_roi: bool * If true the bounding box coordinates must be in the interval ``[0, 1]``. They are scaled by ``(input_height - 1)``, ``(input_width - 1)``; that is, based on the input spatial dimensions. * If false the bounding box coordinates must be in the interval ``[0, input_height - 1]`` and ``[0, input_width - 1]``, respectively for height and width dimensions. box_indices_mode: str * The following values are supported: ``'CORNERS_HEIGHT_FIRST'``, ``'CORNERS_WIDTH_FIRST'``, ``'CENTER_SIZE_HEIGHT_FIRST'``, ``'CENTER_SIZE_WIDTH_FIRST'``. * Representation used to interpret the bounding box coordinates (RoI) input. * ``'CORNERS_HEIGHT_FIRST'``: ``[h_start, w_start, h_end, w_end]`` * ``'CORNERS_WIDTH_FIRST'``: ``[w_start, h_start, w_end, h_end]`` * ``'CENTER_SIZE_HEIGHT_FIRST'``: ``[h_center, w_center, box_height, box_width]`` * ``'CENTER_SIZE_WIDTH_FIRST'``: ``[w_center, h_center, box_width, box_height]`` spatial_scale: float Additional spatial scale that multiplies the bounding box coordinates. Generally used while implementing the RoI Align layer, which uses unnormalized RoI coordinates along with a spatial scale less than or equal to 1. See Also -------- add_resize_bilinear, add_crop """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.cropResize spec_layer_params.targetSize.append(target_height) spec_layer_params.targetSize.append(target_width) spec_layer_params.normalizedCoordinates = normalized_roi spec_layer_params.spatialScale = spatial_scale mode = mode.upper() if isinstance(mode, str) else mode box_indices_mode = ( box_indices_mode.upper() if isinstance(box_indices_mode, str) else box_indices_mode ) if mode == "ALIGN_ENDPOINTS_MODE": spec_layer_params.mode.samplingMethod = _NeuralNetwork_pb2.SamplingMode.Method.Value( "ALIGN_ENDPOINTS_MODE" ) elif mode == "STRICT_ALIGN_ENDPOINTS_MODE": spec_layer_params.mode.samplingMethod = _NeuralNetwork_pb2.SamplingMode.Method.Value( "STRICT_ALIGN_ENDPOINTS_MODE" ) elif mode == "UPSAMPLE_MODE": spec_layer_params.mode.samplingMethod = _NeuralNetwork_pb2.SamplingMode.Method.Value( "UPSAMPLE_MODE" ) elif mode == "ROI_ALIGN_MODE": spec_layer_params.mode.samplingMethod = _NeuralNetwork_pb2.SamplingMode.Method.Value( "ROI_ALIGN_MODE" ) else: raise ValueError("Unsupported crop resize mode %s" % mode) if box_indices_mode == "CORNERS_HEIGHT_FIRST": spec_layer_params.boxIndicesMode.boxMode = _NeuralNetwork_pb2.BoxCoordinatesMode.Coordinates.Value( "CORNERS_HEIGHT_FIRST" ) elif box_indices_mode == "CORNERS_WIDTH_FIRST": spec_layer_params.boxIndicesMode.boxMode = _NeuralNetwork_pb2.BoxCoordinatesMode.Coordinates.Value( "CORNERS_WIDTH_FIRST" ) elif box_indices_mode == "CENTER_SIZE_HEIGHT_FIRST": spec_layer_params.boxIndicesMode.boxMode = _NeuralNetwork_pb2.BoxCoordinatesMode.Coordinates.Value( "CENTER_SIZE_HEIGHT_FIRST" ) elif box_indices_mode == "CENTER_SIZE_WIDTH_FIRST": spec_layer_params.boxIndicesMode.boxMode = _NeuralNetwork_pb2.BoxCoordinatesMode.Coordinates.Value( "CENTER_SIZE_WIDTH_FIRST" ) else: raise ValueError( "Unsupported crop resize box indices mode %s" % box_indices_mode ) return spec_layer
[docs] def set_pre_processing_parameters( self, image_input_names=None, is_bgr=False, red_bias=0.0, green_bias=0.0, blue_bias=0.0, gray_bias=0.0, image_scale=1.0, image_format="NCHW", ): """ Add a pre-processing parameters layer to the neural network object. Parameters ---------- image_input_names: list of str Name of input blobs that are images is_bgr: boolean or dict() Channel order for input blobs that are images. BGR if True else RGB. To specify a different value for each image input, provide a dictionary with input names as keys. red_bias: float or dict() Image re-centering parameter (red channel) blue_bias: float or dict() Image re-centering parameter (blue channel) green_bias: float or dict() Image re-centering parameter (green channel) gray_bias: float or dict() Image re-centering parameter (for grayscale images) image_scale: float or dict() Value by which to scale the images. image_format: str Image format, either 'NCHW' / 'NHWC' See Also -------- set_input, set_output, set_class_labels """ if not image_input_names: return # nothing to do here image_format = ( image_format.upper() if isinstance(image_format, str) else image_format ) if image_format != "NCHW" and image_format != "NHWC": raise ValueError( "Input image format must be either 'NCHW' or 'NHWC'. Provided {}".format( image_format ) ) if not isinstance(is_bgr, dict): is_bgr = dict.fromkeys(image_input_names, is_bgr) if not isinstance(red_bias, dict): red_bias = dict.fromkeys(image_input_names, red_bias) if not isinstance(blue_bias, dict): blue_bias = dict.fromkeys(image_input_names, blue_bias) if not isinstance(green_bias, dict): green_bias = dict.fromkeys(image_input_names, green_bias) if not isinstance(gray_bias, dict): gray_bias = dict.fromkeys(image_input_names, gray_bias) if not isinstance(image_scale, dict): image_scale = dict.fromkeys(image_input_names, image_scale) # Raise error if any key in image preprocessing parameters # are not in image_input_names. def check_valid_preprocessing_keys(input, target, input_name): for key in input: if key not in target: raise ValueError("Invalid key {} in {}.".format(key, input_name)) target = image_input_names check_valid_preprocessing_keys(is_bgr, target, "is_bgr") check_valid_preprocessing_keys(red_bias, target, "red_bias") check_valid_preprocessing_keys(blue_bias, target, "blue_bias") check_valid_preprocessing_keys(green_bias, target, "green_bias") check_valid_preprocessing_keys(gray_bias, target, "gray_bias") check_valid_preprocessing_keys(image_scale, target, "image_scale") spec = self.spec # Add image inputs for input_ in spec.description.input: if input_.name in image_input_names: if input_.type.WhichOneof("Type") == "multiArrayType": array_shape = tuple(input_.type.multiArrayType.shape) if len(array_shape) == 4: input_indices = ( [0, 1, 2, 3] if image_format == "NCHW" else [0, 3, 1, 2] ) elif len(array_shape) == 3: # Adding dummy index for 'batch' for compatibility input_indices = ( [0, 0, 1, 2] if image_format == "NCHW" else [0, 2, 0, 1] ) else: raise ValueError( "Invalid input shape. Input of rank {}, but expecting input of either rank 3 or rank 4".format( len(array_shape) ) ) # Extract image shape depending on input format _, channels, height, width = [array_shape[e] for e in input_indices] if image_format == "NHWC": # If input format is 'NHWC' for TF model, it will be # 'NCHW' for CoreML model. Therefore, add transpose to # NHWC after the input and replace all use of input layers = self.nn_spec.layers complement_transpose = True transpose_names = set() transpose_outputs = [] for layer_ in layers: if ( layer_.HasField("transpose") and layer_.input[0] == input_.name ): transpose_order = list(layer_.transpose.axes) if transpose_order == [ 0, 3, 1, 2, ] or transpose_order == [2, 0, 1]: transpose_names.add(layer_.name) transpose_outputs += list(layer_.output) else: complement_transpose = False break else: for i in layer_.input: if i == input_.name: complement_transpose = False break if complement_transpose: for layer_ in layers: for i in range(len(layer_.input)): if layer_.input[i] in transpose_names: layer_.input[i] = input_.name for layer_ in layers: if layer_.name == input_.name: del layer_.output[:] layer_.output.extend(transpose_outputs) break while len(transpose_names) > 0: for idx, layer_ in enumerate(layers): if layer_.name in transpose_names: del layers[idx] transpose_names.remove(layer_.name) else: axes = [1, 2, 0] if len(array_shape) == 4: axes = [0, 2, 3, 1] input_transpose = input_.name + "_to_nhwc" transpose_layer = self.add_transpose( name=input_transpose, axes=axes, input_name=input_.name, output_name=input_transpose, ) layers.insert(0, layers.pop()) for layer_ in layers: for i in range(len(layer_.input)): if layer_.name == input_transpose: continue if layer_.input[i] == input_.name: layer_.input[i] = input_transpose # TODO: If input is not rank 3 or 4, then accordingly handle # e.g. for rank-2 input, squeeze additional dimension in case of Gray scale image if channels == 1: input_.type.imageType.colorSpace = _FeatureTypes_pb2.ImageFeatureType.ColorSpace.Value( "GRAYSCALE" ) elif channels == 3: if input_.name in is_bgr: if is_bgr[input_.name]: input_.type.imageType.colorSpace = _FeatureTypes_pb2.ImageFeatureType.ColorSpace.Value( "BGR" ) else: input_.type.imageType.colorSpace = _FeatureTypes_pb2.ImageFeatureType.ColorSpace.Value( "RGB" ) else: input_.type.imageType.colorSpace = _FeatureTypes_pb2.ImageFeatureType.ColorSpace.Value( "RGB" ) else: raise ValueError( "Channel Value %d not supported for image inputs" % channels ) input_.type.imageType.width = width input_.type.imageType.height = height preprocessing = self.nn_spec.preprocessing.add() preprocessing.featureName = input_.name scaler = preprocessing.scaler if input_.name in image_scale: scaler.channelScale = image_scale[input_.name] else: scaler.channelScale = 1.0 if input_.name in red_bias: scaler.redBias = red_bias[input_.name] if input_.name in blue_bias: scaler.blueBias = blue_bias[input_.name] if input_.name in green_bias: scaler.greenBias = green_bias[input_.name] if input_.name in gray_bias: scaler.grayBias = gray_bias[input_.name]
[docs] def add_transpose(self, name, axes, input_name, output_name): """ Add a N-D transpose layer with axes as a parameter. Refer to the ``TransposeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. axes: list of int or tuple of int The list containing a permutation of "[0,1,2,...,N-1]" where N is the rank of input/output tensor. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_permute, add_reshape """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) rank = len(axes) axes = [rank + axis if axis < 0 else axis for axis in axes] spec_layer.transpose.axes.extend(axes) return spec_layer
[docs] def add_softmax_nd(self, name, input_name, output_name, axis): """ Add a softmax_nd layer to the model that performs softmax operation along the given axis. Refer to the ``SoftmaxNDLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axis: int Axis to perform the softmax operation on. """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.softmaxND spec_layer_params.axis = axis return spec_layer
[docs] def add_concat_nd(self, name, input_names, output_name, axis, interleave=False): """ Add a concat_nd layer to the model that performs concatenation along the given axis. Refer to the ``ConcatNDLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. axis: int Axis to perform the concat operation on. interleave : bool (Only available in Core ML Specification >= 5 (iOS >= 14, macOS >= 11.0) If true, concatenate by interleaving the inputs """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.concatND spec_layer_params.axis = axis if interleave: spec_layer_params.interleave = True if self.spec: self.spec.specificationVersion = max(self.spec.specificationVersion, _SPECIFICATION_VERSION_IOS_14) return spec_layer
[docs] def add_erf(self, name, input_name, output_name): """ Add an erf function (gaussian error function) layer to the model. Refer to the ``ErfLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.erf.MergeFromString(b"") return spec_layer
[docs] def add_gelu(self, name, input_name, output_name, mode="EXACT"): """ Add a GELU (gaussian error linear unit) activation layer, which is: ``0.5 * x * (1 + erf(x / sqrt(2)))``. Refer to the ``GeluLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. mode: str, optional Gelu mode in [EXACT | TANH_APPROXIMATION | SIGMOID_APPROXIMATION], default EXACT. """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.gelu if mode == "EXACT": spec_layer_params.mode = _NeuralNetwork_pb2.GeluLayerParams.GeluMode.Value( "EXACT" ) elif mode == "TANH_APPROXIMATION": spec_layer_params.mode = _NeuralNetwork_pb2.GeluLayerParams.GeluMode.Value( "TANH_APPROXIMATION" ) elif mode == "SIGMOID_APPROXIMATION": spec_layer_params.mode = _NeuralNetwork_pb2.GeluLayerParams.GeluMode.Value( "SIGMOID_APPROXIMATION" ) else: raise ValueError("Unsupported Gelu mode %s" % mode) return spec_layer
[docs] def add_sin(self, name, input_name, output_name): """ Add a sin layer to the model that computes element-wise sine for the input tensor. Refer to the ``SinLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_sinh, add_asin, add_asinh """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.sin.MergeFromString(b"") return spec_layer
[docs] def add_cos(self, name, input_name, output_name): """ Add a cos layer to the model that computes element-wise cosine for the input tensor. Refer to the ``CosLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_cosh, add_acos, add_acosh """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.cos.MergeFromString(b"") return spec_layer
[docs] def add_tan(self, name, input_name, output_name): """ Add a tan layer to the model that computes element-wise tangent for the input tensor. Refer to the ``TanLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_tanh, add_atan, add_atanh """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.tan.MergeFromString(b"") return spec_layer
[docs] def add_asin(self, name, input_name, output_name): """ Add an asin layer to the model that computes element-wise arc-sine for the input tensor. Refer to the ``AsinLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_sin, add_sinh, add_asinh """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.asin.MergeFromString(b"") return spec_layer
[docs] def add_acos(self, name, input_name, output_name): """ Add an acos layer to the model that computes element-wise arc-cosine for the input tensor. Refer to the ``AcosLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_cos, add_cosh, add_acosh """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.acos.MergeFromString(b"") return spec_layer
[docs] def add_atan(self, name, input_name, output_name): """ Add an atan layer to the model that computes element-wise arc-tangent for the input tensor. Refer to the ``AtanLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_tan, add_tanh, add_atanh """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.atan.MergeFromString(b"") return spec_layer
[docs] def add_sinh(self, name, input_name, output_name): """ Add a sinh layer to the model that computes element-wise hyperbolic sine for the input tensor. Refer to the ``SinhLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_sin, add_asin, add_asinh """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.sinh.MergeFromString(b"") return spec_layer
[docs] def add_cosh(self, name, input_name, output_name): """ Add a osh layer to the model that computes element-wise hyperbolic cosine for the input tensor. Refer to the ``CoshLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_cos, add_acos, add_acosh """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.cosh.MergeFromString(b"") return spec_layer
[docs] def add_tanh(self, name, input_name, output_name): """ Add a tanh layer to the model that computes element-wise hyperbolic tangent for the input tensor. Refer to the ``TanhLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_tan, add_atan, add_atanh """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.tanh.MergeFromString(b"") return spec_layer
[docs] def add_asinh(self, name, input_name, output_name): """ Add an asinh layer to the model that computes element-wise inverse hyperbolic sine for the input tensor. Refer to the ``AsinhLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_sin, add_sinh, add_asin """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.asinh.MergeFromString(b"") return spec_layer
[docs] def add_acosh(self, name, input_name, output_name): """ Add an acosh layer to the model that computes element-wise inverse hyperbolic cosine for the input tensor. Refer to the ``AcoshLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_cos, add_cosh, add_acos """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.acosh.MergeFromString(b"") return spec_layer
[docs] def add_atanh(self, name, input_name, output_name): """ Add an atanh layer to the model that computes element-wise inverse hyperbolic tangent for the input tensor. Refer to the ``AtanhLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_tan, add_tanh, add_atan """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.atanh.MergeFromString(b"") return spec_layer
[docs] def add_exp2(self, name, input_name, output_name): """ Add an exp2 layer to the model that performs element-wise experiential operation. Refer to the ``Exp2LayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.exp2.MergeFromString(b"") return spec_layer
[docs] def add_add_broadcastable(self, name, input_names, output_name): """ Add an add_broadcastable layer to the model that performs element-wise addition operation with broadcast support. Refer to the ``AddBroadcastableLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.addBroadcastable.MergeFromString(b"") self._set_max_input_rank(input_names, output_name) return spec_layer
[docs] def add_multiply_broadcastable(self, name, input_names, output_name): """ Add a multiply_broadcastable layer to the model that performs element-wise multiplication operation with broadcast support. Refer to the ``MultiplyBroadcastableLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.multiplyBroadcastable.MergeFromString(b"") self._set_max_input_rank(input_names, output_name) return spec_layer
[docs] def add_divide_broadcastable(self, name, input_names, output_name): """ Add a divide_broadcastable layer to the model that performs element-wise division operation with broadcast support. Refer to the ``DivideBroadcastableLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.divideBroadcastable.MergeFromString(b"") self._set_max_input_rank(input_names, output_name) return spec_layer
[docs] def add_subtract_broadcastable(self, name, input_names, output_name): """ Add a subtract_broadcastable layer to the model that performs element-wise subtraction operation with broadcast support. Refer to the ``SubtractBroadcastableLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.subtractBroadcastable.MergeFromString(b"") self._set_max_input_rank(input_names, output_name) return spec_layer
[docs] def add_max_broadcastable(self, name, input_names, output_name): """ Add a max_broadcastable layer to the model that performs element-wise maximum operation with broadcast support. Refer to the ``MaxBroadcastableLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.maxBroadcastable.MergeFromString(b"") self._set_max_input_rank(input_names, output_name) return spec_layer
[docs] def add_min_broadcastable(self, name, input_names, output_name): """ Add a min_broadcastable layer to the model that performs element-wise minimum operation with broadcast support. Refer to the ``MinBroadcastableLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.minBroadcastable.MergeFromString(b"") self._set_max_input_rank(input_names, output_name) return spec_layer
[docs] def add_floor_div_broadcastable(self, name, input_names, output_name): """ Add a floor_div_broadcastable layer to the model that performs floor division operation with broadcast support. Refer to the ``FloorDivBroadcastableLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. See Also -------- add_divide_broadcastable """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.floorDivBroadcastable.MergeFromString(b"") self._set_max_input_rank(input_names, output_name) return spec_layer
[docs] def add_mod_broadcastable(self, name, input_names, output_name): """ Add a mod_broadcastable layer to the model that performs element-wise modular operation with broadcast support. Refer to the ``ModBroadcastableLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.modBroadcastable.MergeFromString(b"") self._set_max_input_rank(input_names, output_name) return spec_layer
[docs] def add_pow_broadcastable(self, name, input_names, output_name): """ Add a pow_broadcastable layer to the model that performs element-wise power operation with broadcast support. Refer to the ``PowBroadcastableLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.powBroadcastable.MergeFromString(b"") self._set_max_input_rank(input_names, output_name) return spec_layer
[docs] def add_stack(self, name, input_names, output_name, axis=0): """ Add a stack layer to the model that performs stack operation on a list of tensors into one rank+1 tensor on the given axis. Refer to the ``StackLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. axis: int, optional The axis to perform stack operation, default: 0. """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.stack.axis = axis self.rank_dict[output_name] = self._get_rank(input_names[0]) + 1 return spec_layer
[docs] def add_ceil(self, name, input_name, output_name): """ Add a ceil layer to the model that performs element-wise ceil operation on the input tensor that rounds the value to the smallest integer not less than x. Refer to the ``CeilLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_floor, add_clip """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.ceil.MergeFromString(b"") return spec_layer
[docs] def add_floor(self, name, input_name, output_name): """ Add a floor layer to the model that performs element-wise floor operation on the input tensor that rounds the value to the largest integer not greater than x. Refer to the ``FloorLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_ceil, add_clip """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.floor.MergeFromString(b"") return spec_layer
[docs] def add_round(self, name, input_name, output_name): """ Add a round layer to the model that performs element-wise round operation on the input tensor that rounds the value to the nearest integer. Refer to the ``RoundLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.round.MergeFromString(b"") return spec_layer
[docs] def add_sign(self, name, input_name, output_name): """ Add a sign layer to the model that performs element-wise sign operation (+1 for positive values, -1 for negative values, 0 for zeroes). Refer to the ``SignLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.sign.MergeFromString(b"") return spec_layer
[docs] def add_clip(self, name, input_name, output_name, min_value=0.0, max_value=1.0): """ Add a clip layer to the model that performs element-wise clip operation. Clip the values in the input tensor to the range [min_value, max_value]. Refer to the ``ClipLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. min_value: float, optional Lower bound / minimum value for clip, default: 0.0. max_value: float, optional Upper bound / maximum value for clip, default: 1.0. See Also -------- add_floor, add_ceil """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.clip.MergeFromString(b"") spec_params = spec_layer.clip spec_params.minVal = float(min_value) spec_params.maxVal = float(max_value) return spec_layer
[docs] def add_split_nd( self, name, input_name, output_names, axis, num_splits=2, split_sizes=None ): """ Add a split layer to the model that splits the input tensor into multiple output tensors. Either uniformly split the input tensor into ``num_splits`` tensors, or split into given size list ``split_sizes`` output tensors. Refer to the ``SplitNDLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_names: list of str The output blob names of this layer. axis: int Axis to perform split on. num_splits: int, optional Number of splits, default: 2. split_sizes: list of int or tuple of int, optional List of size to split, default ``[]`` or ``None``. """ if not split_sizes: split_sizes = [] spec_layer = self._add_generic_layer(name, [input_name], output_names) spec_layer_params = spec_layer.splitND spec_layer_params.axis = axis if split_sizes and len(split_sizes) > 0: spec_layer_params.splitSizes.extend(split_sizes) spec_layer_params.numSplits = len(split_sizes) else: spec_layer_params.numSplits = num_splits assert len(output_names) == spec_layer_params.numSplits return spec_layer
[docs] def add_slice_static( self, name, input_name, output_name, begin_ids, end_ids, strides, begin_masks, end_masks, squeeze_masks=None, ): """ Add a slice_static layer to the model that extracts a slice of size ``(end - begin) / stride`` from the given input tensor. Refer to the ``SliceStaticLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. begin_ids: list of int or tuple of int Begin offsets for slice layer. end_ids: list of int or tuple of int End offsets for slice layer. strides: list of int or tuple of int Strides for slice layer. begin_masks: list of bool Boolean masks for begin offsets. end_masks: list of bool Boolean masks for end offsets. squeeze_masks: list of bool Boolean masks for squeezing axis. See Also -------- add_slice_dynamic """ rank = len(begin_ids) assert len(end_ids) == rank assert len(strides) == rank assert len(begin_masks) == rank assert len(end_masks) == rank assert squeeze_masks is None or len(squeeze_masks) == rank spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.sliceStatic spec_layer_params.beginIds.extend(begin_ids) spec_layer_params.endIds.extend(end_ids) spec_layer_params.strides.extend(strides) spec_layer_params.beginMasks.extend(begin_masks) spec_layer_params.endMasks.extend(end_masks) if not (squeeze_masks and any(squeeze_masks)): return spec_layer if self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 spec_layer_params.squeezeMasks.extend(squeeze_masks) return spec_layer
[docs] def add_slice_dynamic( self, name, input_names, output_name, end_ids=None, strides=None, begin_masks=None, end_masks=None, squeeze_masks=None, ): """ Add a slice_dynamic layer to the model that extracts a slice of size ``(end - begin) / stride`` from the given input tensor. Refer to the ``SliceDynamicLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. end_ids: list of int or tuple of int, optional End offsets for slice layer, default: [1]. strides: list of int or tuple of int, optional Strides for slice layer, default: [1]. begin_masks: list of bool, optional Boolean masks for begin offsets, default: [false]. end_masks: list of bool, optional Boolean masks for end offsets, default: [false]. squeeze_masks: list of bool, optional Boolean masks for squeezing axis, default: [false]. See Also -------- add_slice_static """ if not end_ids: end_ids = [1 for _ in range(5)] if not strides: strides = [1 for _ in range(5)] if not begin_masks: begin_masks = [False for _ in range(5)] if not end_masks: end_masks = [False for _ in range(5)] if not squeeze_masks: squeeze_masks = [False for _ in range(5)] spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.sliceDynamic spec_layer_params.endIds.extend(end_ids) spec_layer_params.strides.extend(strides) spec_layer_params.beginMasks.extend(begin_masks) spec_layer_params.endMasks.extend(end_masks) if not any(squeeze_masks): return spec_layer if self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 spec_layer_params.squeezeMasks.extend(squeeze_masks) return spec_layer
[docs] def add_tile(self, name, input_name, output_name, reps=[]): """ Add a tile layer to the model that construct a tensor by repeating the input tensor multiple number of times. Refer to the ``TileLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str or list[str] The input blob name of this layer. If second input is provided, reps parameter is ignored. output_name: str The output blob name of this layer. reps: list of int or tuple of int Number of times to replicate. If `input_name` provides two inputs, second input is used as reps and this parameter is ignored. See Also -------- add_stack, add_concat_nd """ if isinstance(input_name, tuple): input_names = list(input_name) elif isinstance(input_name, list): input_names = input_name else: input_names = [input_name] spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.tile # If two inputs are provided, # ignore reps attribute. if len(input_names) == 2: reps = [] if self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 assert all([i > 0 for i in reps]) spec_layer_params.reps.extend(reps) return spec_layer
[docs] def add_range_static( self, name, output_name, input_names=None, end=1, start=0, step=1 ): """ Add a range_static layer that returns a tensor that contains evenly spaced values. This layer has no input and three parameters. Refer to the ``RangeStaticLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. output_name: str The output blob name of this layer. input_names: list of str The input blob names of this layer. end: int, optional Range parameter: end, default: 1. start: int, optional Range parameter: start, default: 0. step: int, optional Range parameter: step size, default: 1. See Also -------- add_range_dynamic """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.rangeStatic.MergeFromString(b"") spec_params = spec_layer.rangeStatic spec_params.endValue = float(end) spec_params.startValue = float(start) spec_params.stepSizeValue = float(step) self.rank_dict[output_name] = 1 return spec_layer
[docs] def add_range_dynamic(self, name, input_names, output_name, start=0, step=1): """ Add a range_dynamic layer that returns a tensor that contains evenly spaced values. This layer has up to three inputs or no input and three parameters. Refer to the ``RangeDynamicLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names. If input size == 1: end is input, start and step are read from parameters If input size == 2: end, start are inputs, step is read from parameters If input size == 3: start, end, step are all inputs, none of the parameters are used. output_name: str The output blob name of this layer. start: int, optional Range parameter: start. Ignored if start is provided as input, default: 0. step: int, optional Range parameter: step. Ignored if step is provided as input, default: 1. See Also -------- add_range_static """ if len(input_names) < 1 or len(input_names) > 3: raise ValueError("RangeDynamic layer must have either 1, 2 or 3 inputs.") spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.rangeDynamic.MergeFromString(b"") spec_params = spec_layer.rangeDynamic spec_params.startValue = float(start) spec_params.stepSizeValue = float(step) self.rank_dict[output_name] = 1 return spec_layer
[docs] def add_branch(self, name, input_name, if_branch=None, else_branch=None): """ Add a branch layer to the model that provides the functionality of branching or an ``if-else`` block. Refer to the ``BranchLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. if_branch: NeuralNetwork Neural network to execute if the absolute value of the input tensor is greater than 1e-6. else_branch: NeuralNetwork, optional Neural network to execute if the absolute value of the input tensor is less than 1e-6. See Also -------- add_loop, add_loop_continue, add_loop_break """ layer = self._add_generic_layer(name, [input_name], []) branch = layer.branch if if_branch: branch.ifBranch = if_branch else: branch.ifBranch.MergeFromString(b"") if else_branch: branch.elseBranch = else_branch else: branch.elseBranch.MergeFromString(b"") return layer
[docs] def add_loop( self, name, body_network=None, input_name=None, condition=None, condition_network=None, max_iterations=None, ): """ Add a loop layer to the model that provides the functionality of a ``for`` loop, or a ``while`` loop. Refer to the ``LoopLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. body_network: NeuralNetwork Neural network to execute for the body of the loop. input_name: str The input blob name of this layer. condition: str, optional Condition of the loop. condition_network: NeuralNetwork, optional Neural network to execute for the condition of the loop. max_iterations: int, optional Maximum number of iterations of the loop. See Also -------- add_loop_break, add_loop_continue, add_branch """ input_names = [] if input_name is None else [input_name] spec_layer = self._add_generic_layer(name, input_names, []) loop = spec_layer.loop if condition_network is None: loop.conditionNetwork.MergeFromString(b"") else: loop.conditionNetwork = condition_network if condition is not None: loop.conditionVar = str(condition) if max_iterations is not None: loop.maxLoopIterations = ( max_iterations if max_iterations is not None else -1 ) if body_network is None: loop.bodyNetwork.MergeFromString(b"") else: loop.bodyNetwork = body_network return spec_layer
[docs] def add_loop_break(self, name): """ Add a loop_break layer to the model that terminates the loop that contains this layer. Must reside in the ``bodyNetwork`` of the loop layer. Refer to the ``LoopBreakLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. See Also -------- add_loop, add_loop_continue, add_branch """ spec_layer = self.nn_spec.layers.add() spec_layer.name = name spec_layer.loopBreak.MergeFromString(b"") return spec_layer
[docs] def add_loop_continue(self, name): """ Add a loop_continue layer to the model that stops the current loop iteration and continue on the next iteration. Must reside in the ``bodyNetwork`` of the loop layer. Refer to the ``LoopContinueLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. See Also -------- add_loop, add_loop_break, add_branch """ spec_layer = self.nn_spec.layers.add() spec_layer.name = name spec_layer.loopContinue.MergeFromString(b"") return spec_layer
[docs] def add_copy(self, name, input_name, output_name): """ Add a copy layer to the model that copies its input tensor to the output tensor. Input tensor and output tensor must have distinct names. Refer to the ``CopyLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.copy.MergeFromString(b"") # If output name rank is different than earlier, # mark it as unknown if output_name in self.rank_dict and self._get_rank( output_name ) != self._get_rank(input_name): self.rank_dict[output_name] = -1 else: self.rank_dict[output_name] = self._get_rank(input_name) return spec_layer
[docs] def add_greater_than( self, name, input_names, output_name, use_greater_than_equal=False, alpha=0.0 ): """ Add a greater_than layer to the model that performs the element-wise greater-than (>) operation or greater-than-or-equal-to (>=) operation. Broadcasting is supported. Refer to the ``GreaterThanLayerParams``, ``GreaterEqualLayerParams`` messages in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. use_greater_than_equal: bool, optional Whether or not to allow greater than or equal to, default: false. alpha: float, optional y = x1 != alpha, if only one input is provided, default: 0. See Also -------- add_equal, add_not_equal, add_less_than """ if isinstance(input_names, str): input_names = [input_names] spec_layer = self._add_generic_layer(name, input_names, [output_name]) if use_greater_than_equal: spec_layer.greaterEqual.MergeFromString(b"") if len(input_names) == 1: spec_layer.greaterEqual.alpha = alpha else: spec_layer.greaterThan.MergeFromString(b"") if len(input_names) == 1: spec_layer.greaterThan.alpha = alpha return spec_layer
[docs] def add_less_than( self, name, input_names, output_name, use_less_than_equal=False, alpha=0.0 ): """ Add a less_than layer to the model that performs the element-wise less-than (<) operation or less-than-or-equal-to (<=) operation. Broadcasting is supported. Refer to the ``LessThanL_ayerParams``, ``LessEqualLayerParams`` messages in specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. use_less_than_equal: bool, optional Whether or not to allow less than or equal to, default: false. alpha: float, optional y = x1 != alpha, if only one input is provided, default: 0. See Also -------- add_equal, add_not_equal, add_greater_than """ if isinstance(input_names, str): input_names = [input_names] spec_layer = self._add_generic_layer(name, input_names, [output_name]) if use_less_than_equal: spec_layer.lessEqual.MergeFromString(b"") if len(input_names) == 1: spec_layer.lessEqual.alpha = alpha else: spec_layer.lessThan.MergeFromString(b"") if len(input_names) == 1: spec_layer.lessThan.alpha = alpha return spec_layer
[docs] def add_equal(self, name, input_names, output_name, alpha=0.0): """ Add an equal layer to the model that performs the element-wise equal (=) operation. Broadcasting is supported. Refer to the ``EqualLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. alpha: float, optional y = x1 != alpha, if only one input is provided, default: 0. See Also -------- add_not_equal, add_greater_than, add_less_than """ if isinstance(input_names, str): input_names = [input_names] spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.equal.MergeFromString(b"") if len(input_names) == 1: spec_layer.equal.alpha = alpha return spec_layer
[docs] def add_not_equal(self, name, input_names, output_name, alpha=0.0): """ Add a not_equal layer to the model that performs the element-wise not equal (!=) operation. Broadcasting is supported. Refer to the ``NotEqualLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. alpha: float, optional y = x1 != alpha, if only one input is provided, default: 0. See Also -------- add_equal, add_greater_than, add_less_than """ if isinstance(input_names, str): input_names = [input_names] spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.notEqual.MergeFromString(b"") if len(input_names) == 1: spec_layer.notEqual.alpha = alpha return spec_layer
[docs] def add_logical(self, name, input_names, output_name, mode): """ Add a logical layer to the model that performs element-wise logical and/or/xor/not operation. Broadcasting is supported. Refer to the ``LogicalOrLayerParams``, ``LogicalNotLayerParams``, ``LogicalNotLayerParams``, and ``LogicalAndLayerParam`` messages in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. mode: str Logical operation mode in [AND | OR | XOR | NOT]. """ if isinstance(input_names, str): input_names = [input_names] spec_layer = self._add_generic_layer(name, input_names, [output_name]) if mode in ["AND", "OR", "XOR"] and len(input_names) != 2: raise ValueError('Logical operation "%s" requires 2 inputs' % name) if mode in ["NOT"] and len(input_names) != 1: raise ValueError('Logical operation "%s" requires 1 input' % name) if mode == "AND": spec_layer.logicalAnd.MergeFromString(b"") elif mode == "OR": spec_layer.logicalOr.MergeFromString(b"") elif mode == "XOR": spec_layer.logicalXor.MergeFromString(b"") elif mode == "NOT": spec_layer.logicalNot.MergeFromString(b"") else: raise ValueError('Logical operation "%s" is not supported' % mode) return spec_layer
[docs] def add_sliding_windows( self, name, input_name, output_name, axis, window_size, step=1 ): """ Add a sliding_windows layer to the model that returns a tensor containing all windows of size ``window_size`` * separated by ``step`` along the dimension ``axis``. Refer to the ``SlidingWindowsLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The of input blob name of this layer. output_name: str The output blob name of this layer. axis: int Axis to perform the operation. window_size: int Number of elements in the sliding window. step: int, optional The stride of the input elements in the sliding window, default: 1. See Also -------- add_slice, add_slice_static, add_slice_dynamic """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.slidingWindows spec_layer_params.axis = axis spec_layer_params.windowSize = window_size spec_layer_params.step = step self.rank_dict[output_name] = self._get_rank(input_name) + 1 return spec_layer
[docs] def add_reverse(self, name, input_name, output_name, reverse_dim=None): """ Add a reverse layer to the model that reverses specific dimensions of the input tensor. Refer to the ``ReverseLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. reverse_dim: list of int or tuple of int Reverse along the dimension, default [1]. See Also -------- add_reverse_sequence """ if not reverse_dim: reverse_dim = [1] spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reverse spec_layer_params.reverseDim.extend(map(bool, reverse_dim)) return spec_layer
[docs] def add_reverse_sequence( self, name, input_names, output_name, batch_axis=0, seq_axis=-1 ): """ Add a reverse sequence layer to the model that reverses variable length slices. Refer to the ``ReverseSeqLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. batch_axis: int, optional Slices input along the dimension batch_axis, default 0. seq_axis: int, optional Reverse along the dimension seq_axis, default: -1. See Also -------- add_reverse """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.reverseSeq.batchAxis = batch_axis spec_layer.reverseSeq.sequenceAxis = seq_axis return spec_layer
[docs] def add_gather(self, name, input_names, output_name, axis=0): """ Add a gather layer to the model that gathers elements or slices from data and store to a tensor whose shape is defined by indices from the input. Refer to the ``GatherLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. axis: int, optional The axis the operation perform on, default: 0. See Also -------- add_gather_nd, add_gather_along_axis, add_scatter, add_scatter_nd, add_scatter_along_axis """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.gather.axis = axis self.rank_dict[output_name] = ( self._get_rank(input_names[0]) - 1 + self._get_rank(input_names[1]) ) return spec_layer
[docs] def add_scatter(self, name, input_names, output_name, axis=0, mode="UPDATE"): """ Add a scatter layer to the model that scatters data into a new tensor according to indices from the input. Refer to the ``ScatterLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. axis: int The axis the operation perform on, default: 0. mode: str, optional Scatter accumulation mode in [UPDATE | ADD | SUB | MUL | DIV | MAX | MIN], default: UPDATE. See Also -------- add_scatter_nd, add_scatter_along_axis, add_gather, add_gather_nd, add_gather_along_axis """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.scatter spec_layer_params.axis = axis mode = mode.upper() if isinstance(mode, str) else mode if mode == "UPDATE": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value( "SCATTER_UPDATE" ) elif mode == "ADD": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_ADD") elif mode == "SUB": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_SUB") elif mode == "MUL": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_MUL") elif mode == "DIV": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_DIV") elif mode == "MAX": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_MAX") elif mode == "MIN": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_MIN") else: raise ValueError("Unsupported Scatter mode %s" % mode) return spec_layer
[docs] def add_gather_along_axis(self, name, input_names, output_name, axis=0): """ Add a gather_along_axis layer to the model that gathers elements or slices from data and store to a tensor whose shape is defined by indices from the input along the given axis into the output tensor. Refer to the ``GatherAlongAxisLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. axis: int, optional The axis the operation perform on, default: 0. See Also -------- add_gather, add_gather_nd, add_scatter, add_scatter_nd, add_scatter_along_axis """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.gatherAlongAxis.axis = axis self.rank_dict[output_name] = self._get_rank(input_names[1]) return spec_layer
[docs] def add_scatter_along_axis( self, name, input_names, output_name, axis=0, mode="UPDATE" ): """ Add a scatter_along_axis layer to the model that scatters data into a new tensor according to indices from the input along the given axis into the output tensor. Refer to the ``ScatterAlongAxisLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. axis: int The axis to perform on, default: 0. mode: str, optional Scatter accumulation mode in [UPDATE | ADD | SUB | MUL | DIV | MAX | MIN], default: UPDATE See Also -------- add_scatter, add_scatter_nd, add_gather, add_gather_nd, add_gather_along_axis """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.scatterAlongAxis spec_layer_params.axis = axis mode = mode.upper() if isinstance(mode, str) else mode if mode == "UPDATE": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value( "SCATTER_UPDATE" ) elif mode == "ADD": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_ADD") elif mode == "SUB": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_SUB") elif mode == "MUL": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_MUL") elif mode == "DIV": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_DIV") elif mode == "MAX": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_MAX") elif mode == "MIN": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_MIN") else: raise ValueError("Unsupported scatter_along_axis mode %s" % mode) return spec_layer
[docs] def add_gather_nd(self, name, input_names, output_name): """ Add a gather layer to the model that gathers elements or slices from data and store to a tensor whose shape is defined by indices from the input. This is the reverse operation of the scatter operation. Refer to the ``GatherNDLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. See Also -------- add_gather, add_gather_along_axis, add_scatter, add_scatter_nd, add_scatter_along_axis """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.gatherND.MergeFromString(b"") # NOTE: ideally, following is formula for computing output rank # self.rank_dict[output_name] = self._get_rank(input_names[1]) - 1 + self._get_rank(input_names[0]) # + shape_dict[input_names[1]][-1] # But, shape of indices (input_names[1]) is unknown and hence marking as -1 # Converter should update rank if indices are known self.rank_dict[output_name] = -1 return spec_layer
[docs] def add_scatter_nd(self, name, input_names, output_name, mode="UPDATE"): """ Add a scatter layer to the model that scatters data into a new tensor according to indices from input. This is the reverse operation of the gather operation. Refer to the ``ScatterNDLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. mode: str, optional Scatter accumulation mode in [UPDATE | ADD | SUB | MUL | DIV | MAX | MIN], default: UPDATE See Also -------- add_scatter, add_scatter_along_axis, add_gather, add_gather_nd, add_gather_along_axis """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.scatterND mode = mode.upper() if isinstance(mode, str) else mode if mode == "UPDATE": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value( "SCATTER_UPDATE" ) elif mode == "ADD": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_ADD") elif mode == "SUB": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_SUB") elif mode == "MUL": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_MUL") elif mode == "DIV": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_DIV") elif mode == "MAX": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_MAX") elif mode == "MIN": spec_layer_params.mode = _NeuralNetwork_pb2.ScatterMode.Value("SCATTER_MIN") else: raise ValueError("Unsupported scatter mode %s" % mode) return spec_layer
[docs] def add_topk( self, name, input_names, output_names, k=0, axis=0, use_bottom_k=False ): """ Add a topk layer to the model that returns top or bottom k values and the corresponding indices of the input tensor along a given axis. Refer to the ``TopKLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. It must be of length 1 or 2. The optional second input corresponds to value of K. output_names: list of str The output blob names of this layer. First and second correspond to values and indices, respectively. k: int, optional number of values/indices to be computed along the axis. Need not be given of there are two inputs, default: 0. axis: int, optional axis along which the topk values/indices are computed. negative indexing is supported, default: 0 use_bottom_k: bool, optional if true, bottom k values are computed instead, default: false. """ spec_layer = self._add_generic_layer(name, input_names, output_names) spec_layer_params = spec_layer.topK spec_layer_params.axis = axis spec_layer_params.K = k spec_layer_params.useBottomK = use_bottom_k return spec_layer
[docs] def add_argmax(self, name, input_name, output_name, axis, keepdims=True): """ Add an argmax layer to the model that returns the indices of the maximum value along a specified axis in the input tensor. Refer to the ``ArgMaxLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axis: int axis along which the argmax is computed. Negative indexing is supported. keepdims: bool, optional if true, output rank is same as input rank, default: true. See Also -------- add_argmin """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.argMax spec_layer_params.axis = axis spec_layer_params.removeDim = not keepdims input_rank = self._get_rank(input_name) if input_rank == 1: self.rank_dict[output_name] = 1 else: if keepdims: self.rank_dict[output_name] = input_rank else: self.rank_dict[output_name] = input_rank - 1 return spec_layer
[docs] def add_argmin(self, name, input_name, output_name, axis, keepdims=True): """ Add an argmin layer to the model that returns the indices of the minimum value along a specified axis in the input tensor. Refer to the ``ArgMinLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axis: int axis along which the argmin is computed. Negative indexing is supported. keepdims: bool, optional if true, output rank is same as input rank, default: true. See Also -------- add_argmax """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.argMin spec_layer_params.axis = axis spec_layer_params.removeDim = not keepdims input_rank = self._get_rank(input_name) if input_rank == 1: self.rank_dict[output_name] = 1 else: if keepdims: self.rank_dict[output_name] = input_rank else: self.rank_dict[output_name] = input_rank - 1 return spec_layer
[docs] def add_constant_pad( self, name, input_names, output_name, value=0.0, pad_to_given_output_size_mode=False, pad_amounts=[], ): """ Add a constant pad layer. Refer to the ``ConstantPaddingLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob name(s) of this layer. output_name: str The output blob name of this layer. value: float value to be used for padding. pad_to_given_output_size_mode: bool if true, pad_amounts are interpreted as output shapes (see example in NeuralNetwork.proto) pad_amounts: [int], optional must be non negative. Amount to pad in each dimension. Length of the list must be twice the input/output rank. Not required if second input is present. See Also -------- add_padding """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.constantPad spec_layer_params.value = value spec_layer_params.padToGivenOutputSizeMode = pad_to_given_output_size_mode if len(pad_amounts) > 0: spec_layer_params.padAmounts.extend(map(int, pad_amounts)) if len(input_names) == 1 and len(pad_amounts) == 0: raise ValueError( "Constant_pad layer: pad_amounts must be provided when there is a single input" ) return spec_layer
[docs] def add_nms( self, name, input_names, output_names, iou_threshold=0.5, score_threshold=0.0, max_boxes=1, per_class_suppression=False, ): """ Add a non maximum suppression layer. Refer to the ``NonMaximumSuppressionLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. Must be at least 2, and maximum 5. output_names: list of str The output blob names of this layer. Must be of length 4 exactly. iou_threshold: float intersection over union threshold for suppression. Ignored if 3rd input is present. score_threshold: float threshold for selecting boxes to be used for NMS algorithm. Ignored if 4th input is present. max_boxes: int maximum number of boxes to output. Ignored if 5th input is present. per_class_suppression: bool If true, boxes are organized into classes and suppression is applied to each class group separately See Also -------- add_constant_pad """ spec_layer = self._add_generic_layer(name, input_names, output_names) spec_layer_params = spec_layer.NonMaximumSuppression spec_layer_params.iouThreshold = iou_threshold spec_layer_params.scoreThreshold = score_threshold spec_layer_params.maxBoxes = max_boxes spec_layer_params.perClassSuppression = per_class_suppression self.rank_dict[output_names[0]] = 3 self.rank_dict[output_names[1]] = 3 self.rank_dict[output_names[2]] = 2 self.rank_dict[output_names[3]] = 1 return spec_layer
[docs] def add_embedding_nd( self, name, input_name, output_name, vocab_size, embedding_size, W, b=None, is_quantized_weight=False, quantization_type="linear", nbits=8, quant_scale=None, quant_bias=None, quant_lut=None, ): """ Add an embedding layer to the model that performs a matrix lookup and optionally adds a bias. Refer to the ``EmbeddingNDLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. vocab_size: int Size of the vocabulary (1 + maximum integer index of the words). embedding_size: int Size of the embedded vector. W: float32 numpy.array or bytes() Weight matrix of shape (embedding_size, vocab_size). If W is of type bytes(), i.e. quantized to 1-8 bits, other quantization related arguments must be provided as well (see below). b: numpy.array , optional Bias vector of shape (embedding_size, ). Quantization arguments expected, when W is of type bytes(): is_quantized_weight: bool Set it to true when W is of type bytes(), representing quantized weights quantization_type: str When weights are quantized (i.e. W is of type bytes()), this should be either "linear" or "lut". nbits: int Should be between 1 and 8 (inclusive). Number of bits per weight value. quant_scale: numpy.array(dtype=numpy.float32) scale vector to be used with linear quantization. Must be of length either 1 or embedding_size. quant_bias: numpy.array(dtype=numpy.float32) bias vector to be used with linear quantization. Must be of length either 1 or embedding_size. quant_lut: numpy.array(dtype=numpy.float32) the LUT (look up table) to be used with LUT quantization. Must be of length 2^nbits. See Also -------- add_inner_product, add_embedding """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) # Fill in the parameters spec_layer_params = spec_layer.embeddingND spec_layer_params.vocabSize = vocab_size spec_layer_params.embeddingSize = embedding_size spec_layer_params.hasBias = b is not None weights = spec_layer_params.weights if not is_quantized_weight: weights.floatValue.extend(W.flatten()) else: _verify_quantization_arguments( weight=W, output_channels=embedding_size, quantization_type=quantization_type, nbits=nbits, quant_scale=quant_scale, quant_bias=quant_bias, quant_lut=quant_lut, ) _fill_quantized_weights( weights_message=weights, W=W, quantization_type=quantization_type, nbits=nbits, quant_scale=quant_scale, quant_bias=quant_bias, quant_lut=quant_lut, ) if b is not None: bias = spec_layer_params.bias bias.floatValue.extend(b.flatten()) return spec_layer
[docs] def add_batched_mat_mul( self, name, input_names, output_name, transpose_a=False, transpose_b=False, weight_matrix_rows=0, weight_matrix_columns=0, W=None, bias=None, int_8_dynamic_quantize=False, is_quantized_weight=False, quantization_type="linear", nbits=8, quant_scale=None, quant_bias=None, quant_lut=None, ): """ Add a N-D Batched Matrix Multiplication layer with NumPy-like broadcasting. Refer to the ``BatchedMatMulLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. transpose_a: bool, optional Whether or not to transpose A, default: false. transpose_b: bool, optional Whether or not to transpose B, default: false. weight_matrix_rows: int, optional Must be equal to the last dimension of the input, default: 0. weight_matrix_columns: int, optional Must be equal to the last dimension of the output, default: 0. W: float32 numpy.array or bytes(), optional Weight matrix of shape ``(weight_matrix_rows, weight_matrix_columns)``. If ``W`` is of type ``bytes()`` (quantized to 1-8 bits), other quantization-related arguments must be provided as well (see below). bias: float32 numpy.array, optional Bias vector of shape (weight_matrix_columns,). Quantization Quantization arguments, used when ``W`` is of type ``bytes()``: is_quantized_weight: bool, optional Set it to true when ``W`` is of type ``bytes()``, representing quantized weights, default: false. quantization_type: str, optional When weights are quantized (that is, ``W`` is of type ``bytes()``), this should be either ``"linear"`` or ``"lut"``, default: ``"linear"``. nbits: int, optional Should be between 1 and 8 (inclusive). Number of bits per weight value, default: 8. quant_scale: numpy.array(dtype=numpy.float32), optional Scale vector to be used with linear quantization. Must be of length either 1 or ``weight_matrix_columns``, default: ``None``. quant_bias: numpy.array(dtype=numpy.float32), optional Bias vector to be used with linear quantization. Must be of length either 1 or ``weight_matrix_columns``, default: ``None``. quant_lut: numpy.array(dtype=numpy.float32), optional The LUT (look up table) to be used with LUT quantization. Must be of length 2^n bits, default: ``None``. int_8_dynamic_quantize: bool Whether to quantize and dequantize before and after batched matmul, respectively. Expects byte weights, representing int8 values, if True. See NeuralNetwork.proto for other validation conditions. See Also -------- add_inner_product """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.batchedMatmul spec_layer_params.transposeA = transpose_a spec_layer_params.transposeB = transpose_b spec_layer_params.int8DynamicQuantize = int_8_dynamic_quantize if ((W is not None) or (bias is not None)) and len(input_names) == 2: raise ValueError( "batched_mat_mul: Weight and/or bias are ignored when there are two inputs" ) if (W is None) and len(input_names) == 1: raise ValueError( "batched_mat_mul: Weight parameter must be provided when there is one input" ) self.rank_dict[output_name] = 2 for input_ in input_names: self.rank_dict[output_name] = max( self._get_rank(output_name), self._get_rank(input_) ) if len(input_names) == 1: spec_layer_params.weightMatrixFirstDimension = weight_matrix_rows spec_layer_params.weightMatrixSecondDimension = weight_matrix_columns spec_layer_params.hasBias = bias is not None weights = spec_layer_params.weights if not is_quantized_weight: weights.floatValue.extend(_np.transpose(W).flatten()) else: _verify_quantization_arguments( weight=W, output_channels=weight_matrix_columns, quantization_type=quantization_type, nbits=nbits, quant_scale=quant_scale, quant_bias=quant_bias, quant_lut=quant_lut, int_8_dynamic_quantize=int_8_dynamic_quantize, ) if nbits < 8: num_weights = weight_matrix_rows * weight_matrix_columns byte_arr = _np.frombuffer(W, dtype=_np.uint8) W = _unpack_to_bytes(byte_arr, num_weights, nbits) elif int_8_dynamic_quantize: W = _np.frombuffer(W, dtype=_np.int8) else: W = _np.frombuffer(W, dtype=_np.uint8) W = _np.reshape(W, (weight_matrix_rows, weight_matrix_columns)) W = _np.transpose(W) W_bytes = bytes() if nbits == 8: W_bytes += W.flatten().tobytes() else: W_bytes += _convert_array_to_nbit_quantized_bytes( W.flatten(), nbits ).tobytes() _fill_quantized_weights( weights_message=weights, W=W_bytes, use_int_8=int_8_dynamic_quantize, quantization_type=quantization_type, nbits=nbits, quant_scale=quant_scale, quant_bias=quant_bias, quant_lut=quant_lut, ) if bias is not None: bias_param = spec_layer_params.bias bias_param.floatValue.extend(bias.flatten()) return spec_layer
[docs] def add_get_shape(self, name, input_name, output_name): """ Add a get_shape layer to the model. Refer to the ``GetShapeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_reshape, add_reshape_like, add_reshape_static, add_reshape_dynamic """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.getShape.MergeFromString(b"") self.rank_dict[output_name] = 1 return spec_layer
[docs] def add_load_constant_nd(self, name, output_name, constant_value, shape): """ Add a load_constant layer that loads data as a parameter and provides it as an output. Refer to the ``LoadConstantNDLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. output_name: str The output blob name of this layer. constant_value: numpy.array() value of the constant as a numpy array. shape: list of int or tuple of int List of ints representing the shape of the constant. See Also -------- add_elementwise """ spec_layer = self._add_generic_layer(name, [], [output_name]) spec_layer_params = spec_layer.loadConstantND data = spec_layer_params.data data.floatValue.extend(constant_value.flatten()) spec_layer_params.shape.extend(shape) # Rank information self.rank_dict[output_name] = len(shape) if len(data.floatValue) != _np.prod(shape): raise ValueError( "Dimensions of 'shape' do not match the size of the provided constant" ) return spec_layer
[docs] def add_fill_like(self, name, input_name, output_name, value=0.0): """ Add a fill_like layer to the model outputs a tensor filled with a scalar value. Refer to the ``FillLikeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. value: float, optional A scalar value for the fill operation, default 0. See Also -------- add_fill_static, add_fill_dynamic """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.fillLike spec_layer_params.value = value return spec_layer
[docs] def add_fill_static(self, name, output_name, output_shape, value=0.0): """ Add a fill_static layer to the model that outputs a tensor filled with a scalar value given shape as parameter. Refer to the ``FillStaticLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. output_name: str The output blob name of this layer. output_shape: list of int or tuple of int The target shape of the output tensor. value: float, optional A scalar value for the fill operation, default 0. See Also -------- add_fill_like, add_fill_static """ spec_layer = self._add_generic_layer(name, [], [output_name]) spec_layer_params = spec_layer.fillStatic spec_layer_params.value = value spec_layer_params.targetShape.extend(output_shape) self.rank_dict[output_name] = len(output_shape) return spec_layer
[docs] def add_fill_dynamic(self, name, input_name, output_name, value=0.0): """ Add a fill_dynamic layer to the model that outputs a tensor filled with a scalar value. Refer to the ``FillDynamicLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. value: float, optional A scalar value for the fill operation, default: 0. See Also -------- add_fill_like, add_fill_static """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.fillDynamic spec_layer_params.value = value self.rank_dict[output_name] = -1 return spec_layer
[docs] def add_broadcast_to_like(self, name, input_names, output_name): """ Add a broadcast_to_like layer to the model that broadcasts a tensor to a compatible shape. Refer to the ``BroadcastToLikeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. See Also -------- add_broadcast_to_static, add_broadcast_to_dynamic """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.broadcastToLike.MergeFromString(b"") if len(input_names) != 2: raise ValueError("BroadcastToLikeLayer must have two inputs") self.rank_dict[output_name] = self._get_rank(input_names[1]) return spec_layer
[docs] def add_broadcast_to_static(self, name, input_name, output_name, output_shape): """ Add a broadcast_to_static layer to the model that broadcasts a tensor to a compatible shape. Refer to the ``BroadcastToStaticLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. output_shape: list of int or tuple of int The target shape of the output tensor. See Also -------- add_broadcast_to_like, add_broadcast_to_dynamic """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.broadcastToStatic spec_layer_params.targetShape.extend(output_shape) self.rank_dict[output_name] = len(output_shape) return spec_layer
[docs] def add_broadcast_to_dynamic(self, name, input_names, output_name): """ Add a broadcast_to_dynamic layer to the model that broadcasts a tensor to a compatible shape. Refer to the ``BroadcastToDynamicLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. See Also -------- add_broadcast_to_like, add_broadcast_to_static """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.broadcastToDynamic.MergeFromString(b"") # Setting rank to -1 is a hint that Rank was not computed # converter can modify if it's a constant and known self.rank_dict[output_name] = -1 return spec_layer
[docs] def add_expand_dims(self, name, input_name, output_name, axes): """ Add an expand dims layer to the model that increases the rank of the input tensor by adding unit dimensions. Refer to the ``ExpandDimsLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int Dimensions the operation perform on. See Also -------- add_squeeze """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.expandDims spec_layer_params.axes.extend(axes) self.rank_dict[output_name] = self._get_rank(input_name) + len(axes) return spec_layer
[docs] def add_squeeze(self, name, input_name, output_name, axes=None, squeeze_all=False): """ Add a squeeze layer to the model that decrease the rank of the input tensor by removing unit dimensions. Refer to the ``SqueezeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int, optional Dimensions to perform the operation, default: ``None`` (squeeze_all). squeeze_all: bool, optional If true, all dimensions that are 1 are squeezed, default: false. See Also -------- add_expand_dims """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.squeeze if axes is not None: spec_layer_params.axes.extend(axes) spec_layer_params.squeezeAll = squeeze_all if squeeze_all or axes is None: # All the dimensions that are 1 will be squeezed # converter should update rank if shape is known self.rank_dict[output_name] = -1 else: rank = self._get_rank(input_name) - len(axes) self.rank_dict[output_name] = rank if rank != 0 else 1 return spec_layer
[docs] def add_flatten_to_2d(self, name, input_name, output_name, axis=1): """ Add a flatten_to_2d layer to the model that flattens the input tensor into a 2-dimensional matrix. Refer to the ``FlattenTo2DLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The of input blob name of this layer. output_name: str The output blob name of this layer. axis: int, optional Axis to perform the operation, default: 1. See Also -------- add_flatten """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.flattenTo2D spec_layer_params.axis = axis self.rank_dict[output_name] = 2 return spec_layer
[docs] def add_reshape_like(self, name, input_names, output_name): """ Add a reshape_like layer to the model that reshapes a tensor. Refer to the ``ReshapeLikeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. See Also -------- add_reshape, add_reshape_static, add_reshape_dynamic, add_rank_preserving_reshape """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.reshapeLike.MergeFromString(b"") self.rank_dict[output_name] = self._get_rank(input_names[1]) return spec_layer
[docs] def add_reshape_static(self, name, input_name, output_name, output_shape): """ Add a reshape_static layer to the model that reshapes a tensor. Refer to the ``ReshapeStaticLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. output_shape: list of int or tuple of int Target shape of the output tensor. See Also -------- add_reshape, add_reshape_like, add_reshape_dynamic, add_rank_preserving_reshape """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reshapeStatic spec_layer_params.targetShape.extend(output_shape) self.rank_dict[output_name] = len(output_shape) return spec_layer
[docs] def add_reshape_dynamic(self, name, input_names, output_name): """ Add a reshape_dynamic layer to the model that reshapes a tensor. Refer to the ``ReshapeDynamicLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. See Also -------- add_reshape, add_reshape_like, add_reshape_static, add_rank_preserving_reshape """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.reshapeDynamic.MergeFromString(b"") # Setting rank to -1 is a hint that Rank was not computed # converter can modify if it's a constant and known self.rank_dict[output_name] = -1 return spec_layer
[docs] def add_rank_preserving_reshape(self, name, input_name, output_name, output_shape): """ Add a rank_preserving_reshape layer to the model that reshapes the input tensor without altering the rank of the tensor. Refer to the ``RankPreservingReshapeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. output_shape: list of int or tuple of int Determines the shape of the output blob. 0: copy the dimension of the input to output -1: calculate dimensions from the rest of the shape See Also -------- add_reshape, add_reshape_like, add_reshape_static, add_reshape_dynamic """ spec_layer = self._add_generic_layer( name, [input_name], [output_name], input_ranks=[len(output_shape)], input_shapes=[[int(x) for x in output_shape]], output_ranks=[len(output_shape)], output_shapes=[[int(x) for x in output_shape]], ) spec_layer_params = spec_layer.rankPreservingReshape spec_layer_params.targetShape.extend(map(int, output_shape)) return spec_layer
[docs] def add_random_normal_like( self, name, input_name, output_name, mean=0.0, stddev=0.0, seed=-1 ): """ Add a random_normal_like layer to the model that fills the output tensor with random values from normal distribution. Refer to the ``RandomNormalLikeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. mean: float, optional The mean of the normal distribution, default: 0.0. stddev: float, optional The standard deviation of the normal distribution, default: 1.0. seed: int, optional Used to create a random seed for the distribution, default -1 (random). See Also -------- add_random_normal_static, add_random_normal_dynamic """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.randomNormalLike spec_layer_params.mean = mean spec_layer_params.stdDev = stddev spec_layer_params.seed = seed return spec_layer
[docs] def add_random_normal_static( self, name, output_name, output_shape, mean=0.0, stddev=0.0, seed=-1 ): """ Add a random_normal_static layer to the model that fills the output tensor with random values from normal distribution. Refer to the ``RandomNormaStaticLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. output_name: str The output blob name of this layer. output_shape: list of int or tuple of int Target shape of the output tensor. mean: float, optional The mean of the normal distribution, default: 0.0. stddev: float, optional The standard deviation of the normal distribution, default: 1.0. seed: int, optional Used to create a random seed for the distribution. Default -1 (random). See Also -------- add_random_normal_like, add_random_normal_dynamic """ spec_layer = self._add_generic_layer(name, [], [output_name]) spec_layer_params = spec_layer.randomNormalStatic spec_layer_params.outputShape.extend(output_shape) spec_layer_params.mean = mean spec_layer_params.stdDev = stddev spec_layer_params.seed = seed self.rank_dict[output_name] = len(output_shape) return spec_layer
[docs] def add_random_normal_dynamic( self, name, input_names, output_name, mean=0.0, stddev=0.0, seed=-1 ): """ Add a random_normal_dynamic layer to the model that fills the output tensor with random values from normal distribution. Refer to the ``RandomNormalDynamicLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. mean: float, optional The mean of the normal distribution, default: 0.0. stddev: float, optional The standard deviation of the normal distribution, default: 1.0. seed: int, optional Used to create a random seed for the distribution. Default -1 (random). See Also -------- add_random_normal_like, add_random_normal_static """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.randomNormalDynamic spec_layer_params.mean = mean spec_layer_params.stdDev = stddev spec_layer_params.seed = seed # Setting rank to -1 is a hint that Rank was not computed # converter can modify if it's a constant and known self.rank_dict[output_name] = -1 return spec_layer
[docs] def add_random_uniform_like( self, name, input_name, output_name, minval=0.0, maxval=1.0, seed=-1 ): """ Add a random_uniform_like layer to the model that fills the output tensors with random values from uniform distribution. Refer to the ``RandomUniformLikeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. minval: float, optional Lower bound / minimum value of the uniform distribution, default: 0.0. maxval: float, optional Upper bound / maximum value of the uniform distribution, default: 1.0. seed: int, optional Used to create a random seed for the distribution. default -1 (random). See Also -------- add_random_uniform_static, add_random_uniform_dynamic """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.randomUniformLike spec_layer_params.minVal = minval spec_layer_params.maxVal = maxval spec_layer_params.seed = seed return spec_layer
[docs] def add_random_uniform_static( self, name, output_name, output_shape, minval=0.0, maxval=1.0, seed=-1 ): """ Add a random_uniform_static layer to the model that fills the output tensors with random values from uniform distribution. Refer to the ``RandomUniformStaticLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. output_name: str The output blob name of this layer. output_shape: list of int or tuple of int Target shape of the output tensor. minval: float, optional Lower bound / minimum value of the uniform distribution, default: 0.0. maxval: float, optional Upper bound / maximum value of the uniform distribution, default: 1.0. seed: int, optional Used to create a random seed for the distribution. default -1 (random). See Also -------- add_random_uniform_like, add_random_uniform_dynamic """ spec_layer = self._add_generic_layer(name, [], [output_name]) spec_layer_params = spec_layer.randomUniformStatic spec_layer_params.outputShape.extend(output_shape) spec_layer_params.minVal = minval spec_layer_params.maxVal = maxval spec_layer_params.seed = seed self.rank_dict[output_name] = len(output_shape) return spec_layer
[docs] def add_random_uniform_dynamic( self, name, input_names, output_name, minval=0.0, maxval=1.0, seed=-1 ): """ Add a random_uniform_dynamic layer to the model that fills the output tensors with random values from uniform distribution. Refer to the ``RandomUniformDynamicLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. minval: float, optional Lower bound / minimum value of the uniform distribution, default: 0.0. maxval: float, optional Upper bound / maximum value of the uniform distribution, default: 1.0. seed: int, optional Used to create a random seed for the distribution. default -1 (random). See Also -------- add_random_uniform_like, add_random_uniform_static """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.randomUniformDynamic spec_layer_params.minVal = minval spec_layer_params.maxVal = maxval spec_layer_params.seed = seed # Setting rank to -1 is a hint that Rank was not computed # converter can modify if it's a constant and known self.rank_dict[output_name] = -1 return spec_layer
[docs] def add_random_bernoulli_like( self, name, input_name, output_name, prob=0.5, seed=-1 ): """ Add a random_bernoulli_like layer to the model that fills the output tensor with random values from Bernoulli distribution. Refer to the ``RandomBernoulliLikeLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. prob: float, optional Probabilities for Bernoulli distribution, default: 0.5. seed: int, optional Used to create a random seed for the distribution. default -1 (random). See Also -------- add_random_bernoulli_static, add_random_bernoulli_dynamic """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.randomBernoulliLike spec_layer_params.prob = prob spec_layer_params.seed = seed return spec_layer
[docs] def add_random_bernoulli_static( self, name, output_name, output_shape, prob=0.5, seed=-1 ): """ Add a random_bernoulli_static layer to the model that fills the output tensor with random values from Bernoulli distribution. Refer to the ``RandomBernoulliStaticLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. output_name: str The output blob name of this layer. output_shape: list of int or tuple of int Target shape of the output tensor. prob: float, optional Probabilities for Bernoulli distribution, default: 0.5. seed: int, optional Used to create a random seed for the distribution. default -1 (random). See Also -------- add_random_bernoulli_like, add_random_bernoulli_dynamic """ spec_layer = self._add_generic_layer(name, [], [output_name]) spec_layer_params = spec_layer.randomBernoulliStatic spec_layer_params.outputShape.extend(output_shape) spec_layer_params.prob = prob spec_layer_params.seed = seed self.rank_dict[output_name] = len(output_shape) return spec_layer
[docs] def add_random_bernoulli_dynamic( self, name, input_names, output_name, prob=0.5, seed=-1 ): """ Add a random_bernoulli_dynamic layer to the model that fills the output tensor with random values from Bernoulli distribution. Refer to the ``RandomBernoulliDynamicLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. prob: float, optional Probabilities for Bernoulli distribution, default: 0.5. seed: int, optional Used to create a random seed for the distribution. default -1 (random). See Also -------- add_random_bernoulli_like, add_random_bernoulli_static """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.randomBernoulliDynamic spec_layer_params.prob = prob spec_layer_params.seed = seed # Setting rank to -1 is a hint that Rank was not computed # converter can modify if it's a constant and known self.rank_dict[output_name] = -1 return spec_layer
[docs] def add_categorical_distribution( self, name, input_name, output_name, num_samples, is_logits=True, eps=1e-10, temperature=1.0, seed=-1, ): """ Add a categorical_distribution layer to the model that fills the output tensor with random values from categorical distribution. Refer to the ``CategoricalDistributionLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. num_samples: int List of dimensions for the reduce operations. is_logits: bool, optional If true, the input is log probabilities. If false, the input is probabilities, default: True eps: float, optional Epsilon parameter for categorical distribution, default 1e-10. temperature: float, optional Temperature parameter for categorical distribution, default 1.0. seed: int, optional Used to create a random seed for the distribution. default -1 (random). """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.categoricalDistribution spec_layer_params.numSamples = num_samples spec_layer_params.isLogits = is_logits spec_layer_params.eps = eps spec_layer_params.temperature = temperature spec_layer_params.seed = seed return spec_layer
[docs] def add_reduce_sum( self, name, input_name, output_name, axes=None, keepdims=True, reduce_all=False ): """ Add a reduce_sum layer to the model that reduces the input tensor using ``sum(elements across given dimensions)``. Refer to the ``ReduceSumLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int, optional List of dimensions for the reduce operations. Each should be in range ``[-rank(input), rank(input))``, default: ``None`` (``reduce_all``). keepdims: bool, optional Whether or not to retain the reduced dimensions with length 1, default: true. reduce_all: bool, optional Whether or not to reduce on all axes, default: false. See Also -------- add_reduce_l1, add_reduce_l2, add_reduce_min, add_reduce_prod, add_reduce_max, add_reduce_mean, add_reduce_logsum, add_reduce_logsumexp, add_reduce_sumsquare """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reduceSum if axes is not None and len(axes) != 0: spec_layer_params.axes.extend(map(int, axes)) else: reduce_all = True spec_layer_params.keepDims = keepdims spec_layer_params.reduceAll = reduce_all self._set_rank_for_reduce_op( input_name, output_name, axes, keepdims, reduce_all ) return spec_layer
[docs] def add_reduce_prod( self, name, input_name, output_name, axes=None, keepdims=True, reduce_all=False ): """ Add a reduce_prod layer to the model that reduces the input tensor using ``prod(elements across given dimensions)``. Refer to the ``ReduceProdLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int, optional List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default: ``None`` (reduce_all) keepdims: bool, optional Whether or not to retain the reduced dimensions with length 1, default: true. reduce_all: bool, optional Whether or not to reduce on all axes. If axes list is empty, it will be set to true, default: false. See Also -------- add_reduce_l1, add_reduce_l2, add_reduce_sum, add_reduce_min, add_reduce_max, add_reduce_mean, add_reduce_logsum, add_reduce_logsumexp, add_reduce_sumsquare """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reduceProd if axes is not None and len(axes) != 0: spec_layer_params.axes.extend(map(int, axes)) else: reduce_all = True spec_layer_params.keepDims = keepdims spec_layer_params.reduceAll = reduce_all self._set_rank_for_reduce_op( input_name, output_name, axes, keepdims, reduce_all ) return spec_layer
[docs] def add_reduce_mean( self, name, input_name, output_name, axes=None, keepdims=True, reduce_all=False ): """ Add a reduce_mean layer to the model that reduces the input tensor using ``mean(elements across given dimensions)``. Refer to the ``ReduceMeanLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int, optional List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default: ``None`` (reduce_all) keepdims: bool, optional Whether or not to retain the reduced dimensions with length 1, default: true. reduce_all: bool, optional Whether or not to reduce on all axes, default: false. See Also -------- add_reduce_l1, add_reduce_l2, add_reduce_sum, add_reduce_min, add_reduce_prod add_reduce_max, add_reduce_logsum, add_reduce_logsumexp, add_reduce_sumsquare """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reduceMean if axes is not None and len(axes) != 0: spec_layer_params.axes.extend(map(int, axes)) else: reduce_all = True spec_layer_params.keepDims = keepdims spec_layer_params.reduceAll = reduce_all self._set_rank_for_reduce_op( input_name, output_name, axes, keepdims, reduce_all ) return spec_layer
[docs] def add_reduce_max( self, name, input_name, output_name, axes=None, keepdims=True, reduce_all=False ): """ Add a reduce_max layer to the model that reduces the input tensor using ``max(elements across given dimensions)``. Refer to the ``ReduceMaxLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int, optional List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default: ``None`` (reduce_all) keepdims: bool, optional Whether or not to retain the reduced dimensions with length 1, default: true. reduce_all: bool, optional Whether or not to reduce on all axes, default: false. See Also -------- add_reduce_l1, add_reduce_l2, add_reduce_sum, add_reduce_min, add_reduce_prod add_reduce_mean, add_reduce_logsum, add_reduce_logsumexp, add_reduce_sumsquare """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reduceMax if axes is not None and len(axes) != 0: spec_layer_params.axes.extend(map(int, axes)) else: reduce_all = True spec_layer_params.keepDims = keepdims spec_layer_params.reduceAll = reduce_all self._set_rank_for_reduce_op( input_name, output_name, axes, keepdims, reduce_all ) return spec_layer
[docs] def add_reduce_min( self, name, input_name, output_name, axes=None, keepdims=True, reduce_all=False ): """ Add a reduce_min layer to the model that reduces the input tensor using ``min(elements across given dimensions)``. Refer to the ``ReduceMinLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int, optional List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default: ``None`` (reduce_all) keepdims: bool, optional Whether or not to retain the reduced dimensions with length 1, default: true. reduce_all: bool, optional Whether or not to reduce on all axes, default: false. See Also -------- add_reduce_l1, add_reduce_l2, add_reduce_sum, add_reduce_max, add_reduce_prod add_reduce_mean, add_reduce_logsum, add_reduce_logsumexp, add_reduce_sumsquare """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reduceMin if axes is not None and len(axes) != 0: spec_layer_params.axes.extend(map(int, axes)) else: reduce_all = True spec_layer_params.keepDims = keepdims spec_layer_params.reduceAll = reduce_all self._set_rank_for_reduce_op( input_name, output_name, axes, keepdims, reduce_all ) return spec_layer
[docs] def add_reduce_l2( self, name, input_name, output_name, axes=None, keepdims=True, reduce_all=False ): """ Add a reduce_l2 layer to the model that reduces the input tensor using ``l2_normalization(elements across given dimensions)``. Refer to the ``ReduceL2LayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int, optional List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default: ``None`` (reduce_all) keepdims: bool, optional Whether or not to retain the reduced dimensions with length 1, default: true. reduce_all: bool, optional Whether or not to reduce on all axes, default: false. See Also -------- add_reduce_l1, add_reduce_sum, add_reduce_min, add_reduce_max, add_reduce_prod add_reduce_mean, add_reduce_logsum, add_reduce_logsumexp, add_reduce_sumsquare """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reduceL2 if axes is not None and len(axes) != 0: spec_layer_params.axes.extend(map(int, axes)) else: reduce_all = True spec_layer_params.keepDims = keepdims spec_layer_params.reduceAll = reduce_all self._set_rank_for_reduce_op( input_name, output_name, axes, keepdims, reduce_all ) return spec_layer
[docs] def add_reduce_l1( self, name, input_name, output_name, axes=None, keepdims=True, reduce_all=False ): """ Add a reduce_l1 layer to the model that reduces the input tensor using ``l1_normalization(elements across given dimensions)``. Refer to the ``ReduceL1LayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int, optional List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default: ``None`` (reduce_all) keepdims: bool, optional Whether or not to retain the reduced dimensions with length 1, default: true. reduce_all: bool, optional Whether or not to reduce on all axes, default: false. See Also -------- add_reduce_l2, add_reduce_sum, add_reduce_min, add_reduce_max, add_reduce_prod add_reduce_mean, add_reduce_logsum, add_reduce_logsumexp, add_reduce_sumsquare """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reduceL1 if axes is not None and len(axes) != 0: spec_layer_params.axes.extend(map(int, axes)) else: reduce_all = True spec_layer_params.keepDims = keepdims spec_layer_params.reduceAll = reduce_all self._set_rank_for_reduce_op( input_name, output_name, axes, keepdims, reduce_all ) return spec_layer
[docs] def add_reduce_sumsquare( self, name, input_name, output_name, axes=None, keepdims=True, reduce_all=False ): """ Add a reduce_sumsquare layer to the model that reduces the input tensor using ``sum(square(elements across given dimensions))``. Refer to the ``ReduceSumSquareLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int, optional List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default: ``None`` (reduce_all) keepdims: bool, optional Whether or not to retain the reduced dimensions with length 1, default: true. reduce_all: bool, optional Whether or not to reduce on all axes, default: false. See Also -------- add_reduce_l1, add_reduce_l2, add_reduce_sum, add_reduce_min, add_reduce_prod add_reduce_max, add_reduce_mean, add_reduce_logsum, add_reduce_logsumexp """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reduceSumSquare if axes is not None and len(axes) != 0: spec_layer_params.axes.extend(map(int, axes)) else: reduce_all = True spec_layer_params.keepDims = keepdims spec_layer_params.reduceAll = reduce_all self._set_rank_for_reduce_op( input_name, output_name, axes, keepdims, reduce_all ) return spec_layer
[docs] def add_reduce_logsum( self, name, input_name, output_name, axes=None, keepdims=True, reduce_all=False ): """ Add a reduce_logsum layer to the model that reduces the input tensor using log(sum(elements across given dimensions)). Refer to the ``ReduceLogSumLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int, optional List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default: ``None`` (reduce_all) keepdims: bool, optional Whether or not to retain the reduced dimensions with length 1, default: true. reduce_all: bool, optional Whether or not to reduce on all axes, default: false. See Also -------- add_reduce_l1, add_reduce_l2, add_reduce_sum, add_reduce_min, add_reduce_prod add_reduce_max, add_reduce_mean, add_reduce_logsumexp, add_reduce_sumsquare """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reduceLogSum if axes is not None and len(axes) != 0: spec_layer_params.axes.extend(map(int, axes)) else: reduce_all = True spec_layer_params.keepDims = keepdims spec_layer_params.reduceAll = reduce_all self._set_rank_for_reduce_op( input_name, output_name, axes, keepdims, reduce_all ) return spec_layer
[docs] def add_reduce_logsumexp( self, name, input_name, output_name, axes=None, keepdims=True, reduce_all=False ): """ Add a reduce_logsumexp layer to the model that computes ``log(sum(exp(tensor)))`` and reduces along the given axis. Refer to the ``ReduceLogSumExpLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axes: list of int or tuple of int, optional List of dimensions for the reduce operations. Each should be in range [-rank(input), rank(input)), default: ``None`` (reduce_all) keepdims: bool, optional Whether or not to retain the reduced dimensions with length 1, default: true. reduce_all: bool, optional Whether or not to reduce on all axes, default: false. See Also -------- add_reduce_l1, add_reduce_l2, add_reduce_sum, add_reduce_min, add_reduce_prod add_reduce_max, add_reduce_mean, add_reduce_logsum, add_reduce_sumsquare """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.reduceLogSumExp if axes is not None and len(axes) != 0: spec_layer_params.axes.extend(map(int, axes)) else: reduce_all = True spec_layer_params.keepDims = keepdims spec_layer_params.reduceAll = reduce_all self._set_rank_for_reduce_op( input_name, output_name, axes, keepdims, reduce_all ) return spec_layer
[docs] def add_where_nonzero(self, name, input_name, output_name): """ Add a where_nonzero layer to the model that returns a tensor containing the indices of all non-zero elements of input tensor. Refer to the ``WhereNonZeroLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. See Also -------- add_where_broadcastable """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.whereNonZero.MergeFromString(b"") self.rank_dict[output_name] = 2 return spec_layer
[docs] def add_matrix_band_part( self, name, input_name, output_name, num_lower=-1, num_upper=-1 ): """ Add a matrix_band_part layer to the model that copies a tensor setting everything outside a central band in each inner-most matrix to zero. Refer to the ``MatrixBandPartLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The of input blob name of this layer. output_name: str The output blob name of this layer. num_lower: int, optional Number of lower sub-diagonals to keep. Default: -1 (keep entire lower triangle). num_upper: int, optional Number of upper sub-diagonals to keep. Default: -1 (keep entire upper triangle). See Also -------- add_lower_triangular, add_lower_triangular """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.matrixBandPart spec_layer_params.numLower = num_lower spec_layer_params.numUpper = num_upper return spec_layer
[docs] def add_lower_triangular(self, name, input_name, output_name, k=0): """ Add a lower_triangular layer to the model that copies a tensor setting everything outside lower triangular to zero. Refer to the ``LowerTriangularLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The of input blob name of this layer. output_name: str The output blob name of this layer. k: int, optional Diagonal below which to zero elements, default: 0 (main diagonal), k < 0 is lower it and k > 0 is upper. See Also -------- add_upper_triangular, add_matrix_band_part """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.lowerTriangular spec_layer_params.k = k return spec_layer
[docs] def add_upper_triangular(self, name, input_name, output_name, k=0): """ Add a upper_triangular layer to the model that copies a tensor setting everything outside upper triangular to zero. Refer to the ``UpperTriangularLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The of input blob name of this layer. output_name: str The output blob name of this layer. k: int, optional Diagonal above which to zero elements, default: 0 (main diagonal), k < 0 is lower it and k > 0 is upper. See Also -------- add_lower_triangular, add_matrix_band_part """ spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.upperTriangular spec_layer_params.k = k return spec_layer
[docs] def add_where_broadcastable(self, name, input_names, output_name): """ Add a where_broadcastable layer to the model that returns the elements either from tensor x or tensor y, depending on the value in the condition tensor. Refer to the ``WhereBroadcastableLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. See Also -------- add_where_nonzero """ spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer.whereBroadcastable.MergeFromString(b"") self._set_max_input_rank(input_names, output_name) return spec_layer
[docs] def add_layer_normalization( self, name, input_name, output_name, normalized_shape, gamma, beta, eps=1e-5 ): """ Add a layer normalization layer to the model that applies layer normalization over the input tensor. Refer to the ``LayerNormalizationLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. normalized_shape: list of int or tuple of int Input shape from an expected input of size. gamma: WeightParams Weight parameters. beta: WeightParams Bias parameters. eps: float, optional Constant value added to the denominator, default: 1e-5. """ if gamma.shape != tuple(normalized_shape): raise ValueError("Shape of parameter gamma should match normalized_shape") if beta.shape != tuple(normalized_shape): raise ValueError("Shape of parameter beta should match normalized_shape") spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer_params = spec_layer.layerNormalization spec_layer_params.normalizedShape.extend(normalized_shape) weights = spec_layer_params.gamma weights.floatValue.extend(gamma.flatten()) bias = spec_layer_params.beta bias.floatValue.extend(beta.flatten()) spec_layer_params.eps = eps return spec_layer
[docs] def add_one_hot( self, name, input_names, output_name, one_hot_vector_size=None, axis=-1, on_value=1.0, off_value=0.0, ): """ Add a one hot layer to the model that computes the one hot representation of the input tensor. Refer to the ``OneHotLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. one_hot_vector_size: int > 0 size of the one hot vector. axis: int, optional refers to the axis in the output tensor, default: -1. on_value: float, optional Constant value on locations represented by first input, default: 1.0. off_value: float, optional Constant value at all other locations, default: 0.0. """ if self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.oneHot spec_layer_params.axis = axis if one_hot_vector_size: spec_layer_params.oneHotVectorSize = one_hot_vector_size spec_layer_params.onValue = on_value spec_layer_params.offValue = off_value return spec_layer
[docs] def add_cumsum( self, name, input_names, output_name, axis=-1, reverse=False, exclusive=False ): """ Add a cum sum layer to the model computes the cumulative sum values of the input along a given axis. Refer to the ``CumSumLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_names: list of str The input blob names of this layer. output_name: str The output blob name of this layer. axis: int, optional Axis to perform the operation, default: -1. reverse: bool, optional if true, cumsum is performed in the opposite direction, default: False. exclusive: bool, optional whether to perform exclusive or inclusive cumulative summation, default: False. """ if self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 spec_layer = self._add_generic_layer(name, input_names, [output_name]) spec_layer_params = spec_layer.cumSum spec_layer_params.axis = axis spec_layer_params.reverse = reverse spec_layer_params.excludeFinalSum = exclusive return spec_layer
[docs] def add_clamped_relu(self, name, input_name, output_name, alpha=0.0, beta=6.0): """ Add a clamped relu layer to the model. Clamped relu formula is f(x) = min((x >= 0 ? x : alpha * x), beta) Refer to the ``ClampedReluLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. alpha: float, optional slope of the output when input is negative, default: 0.0. beta: float, optional Upper bound on the output value, default: 6.0. See Also -------- add_clip """ if self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.clampedReLU.MergeFromString(b"") spec_params = spec_layer.clampedReLU spec_params.alpha = float(alpha) spec_params.beta = float(beta) return spec_layer
[docs] def add_argsort(self, name, input_name, output_name, axis=0, descending=False): """ Add an argsort layer to the model. Refer to the ``ArgsortLayerParams`` message in the specification (NeuralNetwork.proto) for more details. Parameters ---------- name: str The name of this layer. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. axis: int, optional axis along which to compute the sorting indices descending: bool, optional order of sorting See Also -------- add_topk """ if self.spec and ( not self.spec.specificationVersion or self.spec.specificationVersion < _SPECIFICATION_VERSION_IOS_14 ): self.spec.specificationVersion = _SPECIFICATION_VERSION_IOS_14 spec_layer = self._add_generic_layer(name, [input_name], [output_name]) spec_layer.argSort.MergeFromString(b"") spec_params = spec_layer.argSort spec_params.axis = int(axis) spec_params.descending = descending return spec_layer