Turi Create  4.0
turi::ml_model_base Class Referenceabstract

#include <model_server/lib/extensions/ml_model.hpp>

Public Member Functions

virtual void init_options (const std::map< std::string, flexible_type > &_options)
 
std::vector< std::string > list_fields ()
 
const variant_typeget_value_from_state (std::string key)
 
const std::map< std::string, flexible_type > & get_current_options () const
 
std::map< std::string, flexible_typeget_default_options () const
 
const flexible_typeget_option_value (const std::string &name) const
 
const std::map< std::string, variant_type > & get_state () const
 
bool is_trained () const
 
void set_options (const std::map< std::string, flexible_type > &_options)
 
void add_or_update_state (const std::map< std::string, variant_type > &dict)
 
const std::vector< option_handling::option_info > & get_option_info () const
 
virtual const char * name ()=0
 
virtual const std::string & uid ()=0
 
virtual void save_impl (oarchive &oarc) const
 
virtual void load_version (iarchive &iarc, size_t version)
 
void save_to_url (const std::string &url, const variant_map_type &side_data={})
 
void save_model_to_data (std::ostream &out)
 
virtual size_t get_version () const
 
const std::map< std::string, std::vector< std::string > > & list_functions ()
 
const std::vector< std::string > & list_get_properties ()
 
const std::vector< std::string > & list_set_properties ()
 
variant_type call_function (const std::string &function, variant_map_type argument)
 
variant_type get_property (const std::string &property)
 
variant_type set_property (const std::string &property, variant_map_type argument)
 
const std::string & get_docstring (const std::string &symbol)
 
virtual void perform_registration ()
 

Protected Member Functions

void register_function (std::string fnname, const std::vector< std::string > &arguments, impl_fn fn)
 
void register_defaults (const std::string &fnname, const variant_map_type &arguments)
 
void register_setter (const std::string &propname, impl_fn setfn)
 
void register_getter (const std::string &propname, impl_fn getfn)
 
void register_docstring (const std::pair< std::string, std::string > &fnname_docstring)
 

Protected Attributes

std::map< std::string, variant_typestate
 

Detailed Description

ml_model model base class.

Base class for handling machine learning models. This class is meant to be a guide to aid model writing and not a hard and fast rule of how the code must be structured.

Each machine learning C++ toolkit contains the following:

*) state: This is the key-value map that stores the "model" attributes. The value is of type "variant_type" which is fully interfaced with python. You can add basic types, vectors, SFrames etc.

*) options: Option manager which keeps track of default options, current options, option ranges, type etc. This must be initialized only once in the set_options() function.

Functions that should always be implemented. Here are some notes about each of these functions that may help guide you in writing your model.

*) name: Get the name of this model. You might thinks that this is silly but the name holds the key to everything. The unity_server can construct model_base objects and they can be cast to a model of this type. The name determine how the casting happens. The init_models() function in unity_server.cpp will give you an idea of how this interface happens.

*) save: Save the model with the turicreate iarc. Turi is a server-client module. DO NOT SAVE ANYTHING in the client side. Make sure that everything is in the server side. For example: You might be tempted do keep options that the user provides into the server side but DO NOT do that because save and load will break things for you!

*) load: Load the model with the turicreate oarc.

*) version: A get version for this model

Definition at line 64 of file ml_model.hpp.

Member Function Documentation

◆ add_or_update_state()

void turi::ml_model_base::add_or_update_state ( const std::map< std::string, variant_type > &  dict)

Append the key value store of the model.

Parameters
[in]dictOptions (Key-Value pairs) to set

◆ call_function()

variant_type turi::model_base::call_function ( const std::string &  function,
variant_map_type  argument 
)
inherited

Calls a user defined function.

◆ get_current_options()

const std::map<std::string, flexible_type>& turi::ml_model_base::get_current_options ( ) const

Get current options.

Returns
Dictionary containing current options.

Python side interface

Interfaces with the get_current_options function in the Python side.

◆ get_default_options()

std::map<std::string, flexible_type> turi::ml_model_base::get_default_options ( ) const

Get default options.

Returns
Dictionary with default options.

Python side interface

Interfaces with the get_default_options function in the Python side.

◆ get_docstring()

const std::string& turi::model_base::get_docstring ( const std::string &  symbol)
inherited

Returns the toolkit documentation for a function or property.

◆ get_option_info()

const std::vector<option_handling::option_info>& turi::ml_model_base::get_option_info ( ) const

Returns the option information struct for each of the set parameters.

◆ get_option_value()

const flexible_type& turi::ml_model_base::get_option_value ( const std::string &  name) const

Returns the value of an option. Throws an error if the option does not exist.

Parameters
[in]nameName of the option to get.

◆ get_property()

variant_type turi::model_base::get_property ( const std::string &  property)
inherited

Reads a property.

◆ get_state()

const std::map<std::string, variant_type>& turi::ml_model_base::get_state ( ) const

Get model.

Returns
Model map.

◆ get_value_from_state()

const variant_type& turi::ml_model_base::get_value_from_state ( std::string  key)

Returns the value of a particular key from the state.

Returns
Value of a key model_base for details.

Python side interface

From the python side, this is interfaced with the get() function or the [] operator in python.

◆ get_version()

◆ init_options()

◆ is_trained()

bool turi::ml_model_base::is_trained ( ) const

Is this model trained.

Returns
True if already trained.

◆ list_fields()

std::vector<std::string> turi::ml_model_base::list_fields ( )

Methods with already meaningful default implementations.

Lists all the keys accessible in the "model" map.

Returns
List of keys in the model map. model_base for details.

Python side interface

This is the function that the list_fields should call in python.

◆ list_functions()

const std::map<std::string, std::vector<std::string> >& turi::model_base::list_functions ( )
inherited

Lists all the registered functions. Returns a map of function name to array of argument names for the function.

◆ list_get_properties()

const std::vector<std::string>& turi::model_base::list_get_properties ( )
inherited

Lists all the get-table properties of the class.

◆ list_set_properties()

const std::vector<std::string>& turi::model_base::list_set_properties ( )
inherited

Lists all the set-table properties of the class.

◆ load_version()

◆ name()

virtual const char* turi::model_base::name ( )
pure virtualinherited

Returns the name of the toolkit class, as exposed to client code. For example, the Python proxy for this instance will have a type with this name.

Note: this function is typically overridden using the BEGIN_CLASS_MEMBER_REGISTRATION macro.

◆ perform_registration()

virtual void turi::model_base::perform_registration ( )
virtualinherited

Declare the base registration function. This class has to be handled specially; the macros don't work here due to the override declarations.

Reimplemented in turi::model_proxy.

◆ register_defaults()

void turi::model_base::register_defaults ( const std::string &  fnname,
const variant_map_type &  arguments 
)
protectedinherited

Registers default argument values

◆ register_docstring()

void turi::model_base::register_docstring ( const std::pair< std::string, std::string > &  fnname_docstring)
protectedinherited

Adds a docstring for the specified function or property name.

◆ register_function()

void turi::model_base::register_function ( std::string  fnname,
const std::vector< std::string > &  arguments,
impl_fn  fn 
)
protectedinherited

Adds a function with the specified name, and argument list.

◆ register_getter()

void turi::model_base::register_getter ( const std::string &  propname,
impl_fn  getfn 
)
protectedinherited

Adds a property getter with the specified name.

◆ register_setter()

void turi::model_base::register_setter ( const std::string &  propname,
impl_fn  setfn 
)
protectedinherited

Adds a property setter with the specified name.

◆ save_impl()

◆ save_model_to_data()

void turi::model_base::save_model_to_data ( std::ostream &  out)
inherited

Save a toolkit class to a data stream.

◆ save_to_url()

void turi::model_base::save_to_url ( const std::string &  url,
const variant_map_type &  side_data = {} 
)
inherited

Save a toolkit class to disk.

Parameters
urlThe destination url to store the class.
sidedataAny additional side information

◆ set_options()

void turi::ml_model_base::set_options ( const std::map< std::string, flexible_type > &  _options)

Set one of the options in the algorithm.

The value are checked with the requirements given by the option instance.

Parameters
[in]nameName of the option.
[in]valueValue for the option.

◆ set_property()

variant_type turi::model_base::set_property ( const std::string &  property,
variant_map_type  argument 
)
inherited

Sets a property. The new value of the property should appear in the argument map under the key "value".

◆ uid()

virtual const std::string& turi::model_base::uid ( )
pure virtualinherited

Returns a unique identifier for the toolkit class. It can be any unique ID. The UID is only used at runtime (to determine the concrete type of an arbitrary model_base instance) and is never stored.

Note: this function is typically overridden using the BEGIN_CLASS_MEMBER_REGISTRATION macro.

Implemented in turi::model_proxy.

Member Data Documentation

◆ state

std::map<std::string, variant_type> turi::ml_model_base::state
protected

All things python

Definition at line 206 of file ml_model.hpp.


The documentation for this class was generated from the following file: