Turi Create
4.0
|
#include <toolkits/object_detection/od_data_iterator.hpp>
Classes | |
struct | parameters |
Public Member Functions | |
virtual std::vector< neural_net::labeled_image > | next_batch (size_t batch_size)=0 |
virtual bool | has_next_batch () const =0 |
virtual const std::vector< std::string > & | class_labels () const =0 |
virtual size_t | num_instances () const =0 |
Pure virtual interface for classes that produce batches of data (pre-augmentation) from a raw SFrame.
Definition at line 26 of file od_data_iterator.hpp.
|
pure virtual |
Returns a sorted list of the unique "label" values found in the annotations.
Implemented in turi::object_detection::simple_data_iterator.
|
pure virtual |
Returns true when next_batch
will return a non-empty value.
Implemented in turi::object_detection::simple_data_iterator.
|
pure virtual |
Returns a vector whose size is equal to batch_size
.
If repeat
was set in the parameters, then the iterator will cycle indefinitely through the SFrame over and over. Otherwise, the last non-empty batch may contain fewer than batch_size
elements, and every batch after that will be empty.
The x,y coordinates in the returned annotations indicate the upper-left corner of the bounding box.
Implemented in turi::object_detection::simple_data_iterator.
|
pure virtual |
Returns the number of annotations (bounding boxes) found across all rows.
Implemented in turi::object_detection::simple_data_iterator.