6 #ifndef _FEATURE_BINNER_H_ 7 #define _FEATURE_BINNER_H_ 9 #include <model_server/lib/toolkit_class_macros.hpp> 10 #include <toolkits/feature_engineering/transformer_base.hpp> 11 #include <toolkits/feature_engineering/topk_indexer.hpp> 12 #include <core/storage/serialization/serialization_includes.hpp> 13 #include <core/export.hpp> 21 SERIALIZABLE_POD(turi::bin);
26 namespace feature_engineering {
52 static constexpr
size_t FEATURE_BINNER_VERSION = 1;
56 std::map<std::string, flex_type_enum> feature_types;
57 std::vector<std::string> feature_columns;
61 std::map<std::string, std::vector<bin>> bins;
79 void init_options(
const std::map<std::string, flexible_type>&_options)
override;
84 size_t get_version()
const override;
100 void init_transformer(
const std::map<std::string,
147 feature_binner::get_default_options);
149 feature_binner::get_value_from_state,
#define BEGIN_CLASS_MEMBER_REGISTRATION(python_facing_classname)
gl_sframe fit_transform(gl_sframe data)
#define REGISTER_CLASS_MEMBER_FUNCTION(function,...)
The serialization input archive object which, provided with a reference to an istream, will read from the istream, providing deserialization capabilities.
virtual ~feature_binner()
#define END_CLASS_MEMBER_REGISTRATION
#define REGISTER_NAMED_CLASS_MEMBER_FUNCTION(name, function,...)
The serialization output archive object which, provided with a reference to an ostream, will write to the ostream, providing serialization capabilities.
void transform(S &&input, T &&output, TransformFn transformfn, std::set< size_t > constraint_segments=std::set< size_t >())