7 #ifndef TURI_OBJECT_DETECTION_OD_EVALUATION_H_ 8 #define TURI_OBJECT_DETECTION_OD_EVALUATION_H_ 12 #include <model_server/lib/variant.hpp> 13 #include <ml/neural_net/image_augmentation.hpp> 16 namespace object_detection {
28 std::vector<neural_net::image_annotation> apply_non_maximum_suppression(
29 std::vector<neural_net::image_annotation> predictions,
float iou_threshold);
46 std::vector<float> iou_thresholds);
55 void add_row(
const std::vector<neural_net::image_annotation>& predictions,
56 const std::vector<neural_net::image_annotation>& ground_truth);
84 std::map<float, float> evaluate_class(
size_t identifier);
90 : confidence(confidence), bounding_box(std::move(bounding_box)),
103 std::vector<prediction> predictions;
106 std::vector<neural_net::image_box> ground_truth_boxes;
111 std::vector<size_t> ground_truth_indices;
115 std::vector<class_data> data_;
116 std::vector<float> iou_thresholds_;
122 #endif // TURI_OBJECT_DETECTION_OD_EVALUATION_H_
void add_row(const std::vector< neural_net::image_annotation > &predictions, const std::vector< neural_net::image_annotation > &ground_truth)
average_precision_calculator(flex_list class_labels, std::vector< float > iou_thresholds)
variant_map_type evaluate()
std::vector< flexible_type > flex_list