Turi Create
4.0
|
#include <toolkits/supervised_learning/supervised_learning.hpp>
Public Member Functions | |
virtual void | train ()=0 |
std::vector< std::vector< flexible_type > > | get_metadata_mapping () |
virtual flexible_type | predict_single_example (const ml_data_iterator &it, const prediction_type_enum &output_type=prediction_type_enum::NA) |
virtual flexible_type | predict_single_example (const DenseVector &x, const prediction_type_enum &output_type=prediction_type_enum::NA) |
virtual flexible_type | predict_single_example (const SparseVector &x, const prediction_type_enum &output_type=prediction_type_enum::NA) |
virtual std::map< std::string, variant_type > | evaluate (const ml_data &test_data, const std::string &evaluation_type="", bool with_prediction=false) |
virtual std::map< std::string, variant_type > | evaluate (const sframe &X, const sframe &y, const std::string &evaluation_type="", bool with_prediction=false) |
virtual std::shared_ptr< sarray< flexible_type > > | predict (const ml_data &test_data, const std::string &output_type="") |
virtual std::shared_ptr< sarray< flexible_type > > | predict (const sframe &X, const std::string &output_type="") |
virtual std::shared_ptr< sarray< flexible_type > > | extract_features (const sframe &X, ml_missing_value_action missing_value_action) |
virtual sframe | predict_topk (const sframe &test_data, const std::string &output_type="", size_t topk=5) |
virtual sframe | predict_topk (const ml_data &test_data, const std::string &output_type="", size_t topk=5) |
virtual sframe | classify (const ml_data &test_data, const std::string &output_type="") |
virtual sframe | classify (const sframe &X, const std::string &output_type="") |
virtual gl_sarray | fast_predict (const std::vector< flexible_type > &rows, const std::string &missing_value_action="error", const std::string &output_type="") |
virtual gl_sframe | fast_predict_topk (const std::vector< flexible_type > &rows, const std::string &missing_value_action="error", const std::string &output_type="", const size_t topk=5) |
virtual gl_sframe | fast_classify (const std::vector< flexible_type > &rows, const std::string &missing_value_action="error") |
virtual void | init (const sframe &X, const sframe &y, const sframe &valid_X=sframe(), const sframe &valid_y=sframe(), ml_missing_value_action mva=ml_missing_value_action::ERROR) |
virtual void | set_coefs (const DenseVector &coefs) |
void | set_evaluation_metric (std::vector< std::string > _metrics) |
void | set_tracking_metric (std::vector< std::string > _metrics) |
void | set_more_warnings (bool more_warnings) |
virtual void | set_default_evaluation_metric () |
virtual void | set_default_tracking_metric () |
std::map< std::string, flexible_type > | get_train_stats () const |
sframe | impute_missing_columns_using_current_metadata (const sframe &X) const |
ml_data | construct_ml_data_using_current_metadata (const sframe &X, const sframe &y, ml_missing_value_action mva=ml_missing_value_action::ERROR) const |
ml_data | construct_ml_data_using_current_metadata (const sframe &X, ml_missing_value_action mva=ml_missing_value_action::ERROR) const |
size_t | num_features () const |
size_t | num_examples () const |
size_t | num_unpacked_features () const |
std::vector< std::string > | get_feature_names () const |
std::string | get_target_name () const |
std::shared_ptr< ml_metadata > | get_ml_metadata () const |
virtual bool | is_classifier () const =0 |
bool | is_dense () |
std::vector< std::string > | get_metrics () const |
std::vector< std::string > | get_tracking_metrics () const |
std::string | get_metric_display_name (const std::string &metric) const |
void | display_regression_training_summary (std::string model_display_name) const |
void | display_classifier_training_summary (std::string model_display_name, bool simple_mode=false) const |
virtual void | model_specific_init (const ml_data &data, const ml_data &validation_data) |
virtual bool | support_missing_value () const |
void | api_train (gl_sframe data, const std::string &target, const variant_type &validation_data, const std::map< std::string, flexible_type > &_options) |
gl_sarray | api_predict (gl_sframe data, std::string missing_value_action, std::string output_type) |
gl_sframe | api_predict_topk (gl_sframe data, std::string missing_value_action, std::string output_type, size_t topk=5) |
gl_sframe | api_classify (gl_sframe data, std::string missing_value_action, std::string output_type) |
variant_map_type | api_evaluate (gl_sframe data, std::string missing_value_action, std::string metric, gl_sarray predictions=gl_sarray(), bool with_prediction=false) |
gl_sarray | api_extract_features (gl_sframe data, std::string missing_value_action) |
virtual std::shared_ptr< coreml::MLModelWrapper > | export_to_coreml ()=0 |
virtual void | init_options (const std::map< std::string, flexible_type > &_options) |
std::vector< std::string > | list_fields () |
const variant_type & | get_value_from_state (std::string key) |
const std::map< std::string, flexible_type > & | get_current_options () const |
std::map< std::string, flexible_type > | get_default_options () const |
const flexible_type & | get_option_value (const std::string &name) const |
const std::map< std::string, variant_type > & | get_state () const |
bool | is_trained () const |
void | set_options (const std::map< std::string, flexible_type > &_options) |
void | add_or_update_state (const std::map< std::string, variant_type > &dict) |
const std::vector< option_handling::option_info > & | get_option_info () const |
virtual const char * | name ()=0 |
virtual const std::string & | uid ()=0 |
virtual void | save_impl (oarchive &oarc) const |
virtual void | load_version (iarchive &iarc, size_t version) |
void | save_to_url (const std::string &url, const variant_map_type &side_data={}) |
void | save_model_to_data (std::ostream &out) |
virtual size_t | get_version () const |
const std::map< std::string, std::vector< std::string > > & | list_functions () |
const std::vector< std::string > & | list_get_properties () |
const std::vector< std::string > & | list_set_properties () |
variant_type | call_function (const std::string &function, variant_map_type argument) |
variant_type | get_property (const std::string &property) |
variant_type | set_property (const std::string &property, variant_map_type argument) |
const std::string & | get_docstring (const std::string &symbol) |
virtual void | perform_registration () |
Protected Member Functions | |
void | register_function (std::string fnname, const std::vector< std::string > &arguments, impl_fn fn) |
void | register_defaults (const std::string &fnname, const variant_map_type &arguments) |
void | register_setter (const std::string &propname, impl_fn setfn) |
void | register_getter (const std::string &propname, impl_fn getfn) |
void | register_docstring (const std::pair< std::string, std::string > &fnname_docstring) |
Protected Attributes | |
std::map< std::string, variant_type > | state |
Base class for handling supervised learning class. This class is meant to be a guide to aid model writing and not a hard and fast rule of how the code must be structured.
Each supervised learning C++ toolkit contains the following:
*) model: This is the key-value map that stores the "model" attributes. The value is of type "variant_type" which is fully interfaced with python. You can add basic types, vectors, SFrames etc.
*) ml_mdata: A globally consistent object with column wise metadata. This metadata changes with time (even after training). If you want to freeze the metadata after training, you have to do so yourself.
*) train_feature_size: Feature sizes (i.e column sizes) during train time. Numerical features are of size 1, categorical features are of size (# categories), vector features are of size length, and dictionary features are of size # keys.
*) options: Option manager which keeps track of default options, current options, option ranges, type etc. This must be initialized only once in the set_options() function.
Functions that should always be implemented. Here are some notes about each of these functions that may help guide you in writing your model.
*) name: Get the name of this model. You might thinks that this is silly but the name holds the key to everything. The unity_server can construct model_base objects and they can be cast to a model of this type. The name determine how the casting happens. The init_models() function in unity_server.cpp will give you an idea of how this interface happens.
*) train: A train function for the model.
*) predict_single_example: A predict function for the model for single example. If this is implemented, batch predictions and evaluation need not be implemented.
*) predict: A predict function for the model for batch predictions. The result of this function can be an SArray of predictions. One for each value of the input SFrame.
*) evaluate: An evaluattion function for the model for evaluations. The result of this function must be an updated evaluation_stats map which can be queried with the get_evaluation_stats().
*) save: Save the model with the turicreate iarc. Turi is a server-client module. DO NOT SAVE ANYTHING in the client side. Make sure that everything is in the server side. For example: You might be tempted do keep options that the user provides into the server side but DO NOT do that because save and load will break things for you!
*) load: Load the model with the turicreate oarc.
*) init_options: Init the options
This class interfaces with the SupervisedLearning class in Python and works end to end once the following set of fuctions are implemented by the user.
See the file supervised_learning_model.cxx for an example of how to use this class in building your supervised learning method.
Definition at line 179 of file supervised_learning.hpp.
|
inherited |
Append the key value store of the model.
[in] | dict | Options (Key-Value pairs) to set |
gl_sframe turi::supervised::supervised_learning_model_base::api_classify | ( | gl_sframe | data, |
std::string | missing_value_action, | ||
std::string | output_type | ||
) |
API interface through the unity server.
Run classification.
variant_map_type turi::supervised::supervised_learning_model_base::api_evaluate | ( | gl_sframe | data, |
std::string | missing_value_action, | ||
std::string | metric, | ||
gl_sarray | predictions = gl_sarray() , |
||
bool | with_prediction = false |
||
) |
API interface through the unity server.
Evaluate the model
gl_sarray turi::supervised::supervised_learning_model_base::api_extract_features | ( | gl_sframe | data, |
std::string | missing_value_action | ||
) |
API interface through the unity server.
Extract features!
gl_sarray turi::supervised::supervised_learning_model_base::api_predict | ( | gl_sframe | data, |
std::string | missing_value_action, | ||
std::string | output_type | ||
) |
API interface through the unity server.
Run prediction.
gl_sframe turi::supervised::supervised_learning_model_base::api_predict_topk | ( | gl_sframe | data, |
std::string | missing_value_action, | ||
std::string | output_type, | ||
size_t | topk = 5 |
||
) |
API interface through the unity server.
Run multiclass prediction.
void turi::supervised::supervised_learning_model_base::api_train | ( | gl_sframe | data, |
const std::string & | target, | ||
const variant_type & | validation_data, | ||
const std::map< std::string, flexible_type > & | _options | ||
) |
API interface through the unity server.
Train the model
|
inherited |
Calls a user defined function.
|
virtual |
Make classification using a trained supervised_learning model.
[in] | X | Test data (only independent variables) |
[in] | output_type | Type of classifcation (future proof). |
Reimplemented in turi::supervised::linear_svm.
|
inlinevirtual |
Same as classify(ml_data), but takes SFrame as input.
Definition at line 361 of file supervised_learning.hpp.
ml_data turi::supervised::supervised_learning_model_base::construct_ml_data_using_current_metadata | ( | const sframe & | X, |
const sframe & | y, | ||
ml_missing_value_action | mva = ml_missing_value_action::ERROR |
||
) | const |
Construct ml-data from the predictors and target using the current value of the metadata.
[in] | X | Predictors |
[in] | y | target |
[in] | new_opts | Additional options. |
ml_data turi::supervised::supervised_learning_model_base::construct_ml_data_using_current_metadata | ( | const sframe & | X, |
ml_missing_value_action | mva = ml_missing_value_action::ERROR |
||
) | const |
Construct ml-data from the predictors using the current value of the metadata.
[in] | X | Predictors |
[in] | new_opts | Additional options. |
void turi::supervised::supervised_learning_model_base::display_classifier_training_summary | ( | std::string | model_display_name, |
bool | simple_mode = false |
||
) | const |
Display model training data summary for classifier.
[in] | model_display_name | Name to be displayed |
void turi::supervised::supervised_learning_model_base::display_regression_training_summary | ( | std::string | model_display_name | ) | const |
Display model training data summary for regression.
[in] | model_display_name | Name to be displayed |
|
virtual |
Evaluate the model.
[in] | test_data | Test data. |
[in] | evaluation_type | Evalution type. |
Reimplemented in turi::supervised::xgboost::xgboost_model.
|
inlinevirtual |
Same as evaluate(ml_data), but take SFrame as input.
Definition at line 278 of file supervised_learning.hpp.
|
pure virtual |
Export to CoreML.
Implemented in turi::supervised::linear_svm, turi::supervised::logistic_regression, turi::supervised::linear_regression, turi::supervised::xgboost::boosted_trees_classifier, turi::supervised::xgboost::random_forest_classifier, turi::supervised::xgboost::boosted_trees_regression, and turi::supervised::xgboost::random_forest_regression.
|
inlinevirtual |
Extract features!
Reimplemented in turi::supervised::xgboost::xgboost_model.
Definition at line 309 of file supervised_learning.hpp.
|
virtual |
Fast path predictions given a row of flexible_types
[in] | rows | List of rows (each row is a flex_dict) |
[in] | output_type | Output type. |
Reimplemented in turi::supervised::linear_svm.
|
virtual |
Fast path predictions given a row of flexible_types.
[in] | rows | List of rows (each row is a flex_dict) |
[in] | missing_value_action | Missing value action string |
[in] | output_type | Output type. |
Reimplemented in turi::supervised::xgboost::xgboost_model.
|
inlinevirtual |
Fast path predictions given a row of flexible_types.
[in] | rows | List of rows (each row is a flex_dict) |
[in] | missing_value_action | Missing value action string |
[in] | output_type | Output type. |
[in] | topk | Number of classes to return |
Reimplemented in turi::supervised::logistic_regression, and turi::supervised::xgboost::xgboost_model.
Definition at line 388 of file supervised_learning.hpp.
|
inherited |
Get current options.
Interfaces with the get_current_options function in the Python side.
|
inherited |
Get default options.
Interfaces with the get_default_options function in the Python side.
|
inherited |
Returns the toolkit documentation for a function or property.
std::vector<std::string> turi::supervised::supervised_learning_model_base::get_feature_names | ( | ) | const |
Get names of predictor variables.
std::vector<std::vector<flexible_type> > turi::supervised::supervised_learning_model_base::get_metadata_mapping | ( | ) |
Get metadata mapping.
std::string turi::supervised::supervised_learning_model_base::get_metric_display_name | ( | const std::string & | metric | ) | const |
Get metric display name.
std::vector<std::string> turi::supervised::supervised_learning_model_base::get_metrics | ( | ) | const |
Get metrics strings.
|
inline |
Get ml_metadata.
Definition at line 564 of file supervised_learning.hpp.
|
inherited |
Returns the option information struct for each of the set parameters.
|
inherited |
Returns the value of an option. Throws an error if the option does not exist.
[in] | name | Name of the option to get. |
|
inherited |
Reads a property.
|
inherited |
Get model.
std::string turi::supervised::supervised_learning_model_base::get_target_name | ( | ) | const |
Get name of the target column.
std::vector<std::string> turi::supervised::supervised_learning_model_base::get_tracking_metrics | ( | ) | const |
Get tracking metrics strings.
std::map<std::string, flexible_type> turi::supervised::supervised_learning_model_base::get_train_stats | ( | ) | const |
Get training stats.
The dictionary returned to the user can be transfered as is to the python side. You MUST use this to return a dictionary to the object.
|
inherited |
Returns the value of a particular key from the state.
From the python side, this is interfaced with the get() function or the [] operator in python.
|
inlinevirtualinherited |
Returns the current version of the toolkit class for this instance, for serialization purposes.
Reimplemented in turi::kmeans::kmeans_model, turi::recsys::recsys_model_base, turi::model_proxy, turi::supervised::xgboost::xgboost_model, turi::text::topic_model, turi::pattern_mining::fp_growth, turi::supervised::logistic_regression, turi::supervised::linear_svm, turi::sdk_model::feature_engineering::random_projection, turi::text::alias_topic_model, turi::sdk_model::feature_engineering::feature_binner, turi::sdk_model::feature_engineering::sample_transformer, turi::supervised::linear_regression, turi::sdk_model::feature_engineering::transformer_base, turi::sdk_model::feature_engineering::count_featurizer, and turi::simple_model.
Definition at line 130 of file model_base.hpp.
sframe turi::supervised::supervised_learning_model_base::impute_missing_columns_using_current_metadata | ( | const sframe & | X | ) | const |
Impute missing columns with 'None' values.
[in] | X | Predictors |
|
virtual |
Init the model with the data.
[in] | X | Predictors |
[in] | y | target |
NA.
|
inlinevirtualinherited |
Set one of the options in the algorithm. Use the option manager to set these options. If the option does not satisfy the conditions that the option manager has imposed on it. Errors will be thrown.
[in] | options | Options to set |
Reimplemented in turi::kmeans::kmeans_model, turi::pattern_mining::fp_growth, turi::text::topic_model, turi::recsys::recsys_itemcf, turi::supervised::logistic_regression, turi::supervised::linear_svm, turi::sdk_model::feature_engineering::transformer_base, turi::text::alias_topic_model, turi::sdk_model::feature_engineering::random_projection, turi::supervised::xgboost::xgboost_model, turi::sdk_model::feature_engineering::feature_binner, turi::supervised::xgboost::boosted_trees_classifier, turi::supervised::xgboost::random_forest_classifier, turi::sdk_model::feature_engineering::count_featurizer, turi::sdk_model::feature_engineering::sample_transformer, turi::supervised::linear_regression, turi::supervised::xgboost::boosted_trees_regression, turi::supervised::xgboost::random_forest_regression, and turi::recsys::recsys_factorization_model_base.
Definition at line 80 of file ml_model.hpp.
|
pure virtual |
Returns true if the model is a classifier.
Implemented in turi::supervised::logistic_regression, turi::supervised::linear_svm, turi::supervised::xgboost::boosted_trees_classifier, turi::supervised::xgboost::random_forest_classifier, turi::supervised::linear_regression, turi::supervised::xgboost::boosted_trees_regression, and turi::supervised::xgboost::random_forest_regression.
|
inline |
Returns true if the model is a classifier.
Definition at line 576 of file supervised_learning.hpp.
|
inherited |
Is this model trained.
|
inherited |
Lists all the keys accessible in the "model" map.
This is the function that the list_fields should call in python.
|
inherited |
Lists all the registered functions. Returns a map of function name to array of argument names for the function.
|
inherited |
Lists all the get-table properties of the class.
|
inherited |
Lists all the set-table properties of the class.
|
inlinevirtualinherited |
Loads a toolkit class previously saved at a particular version number. Should raise an exception on failure.
Reimplemented in turi::kmeans::kmeans_model, turi::recsys::recsys_model_base, turi::model_proxy, turi::supervised::xgboost::xgboost_model, turi::pattern_mining::fp_growth, turi::text::topic_model, turi::supervised::logistic_regression, turi::supervised::linear_svm, turi::sdk_model::feature_engineering::random_projection, turi::text::alias_topic_model, turi::supervised::linear_regression, turi::sdk_model::feature_engineering::feature_binner, turi::sdk_model::feature_engineering::sample_transformer, turi::sdk_model::feature_engineering::transformer_base, turi::sdk_model::feature_engineering::count_featurizer, and turi::simple_model.
Definition at line 96 of file model_base.hpp.
|
inlinevirtual |
Initialize things that are specific to your model.
[in] | data | ML-Data object created by the init function. |
Reimplemented in turi::supervised::logistic_regression, turi::supervised::linear_svm, turi::supervised::xgboost::xgboost_model, turi::supervised::xgboost::boosted_trees_classifier, turi::supervised::xgboost::random_forest_classifier, and turi::supervised::linear_regression.
Definition at line 622 of file supervised_learning.hpp.
|
pure virtualinherited |
Returns the name of the toolkit class, as exposed to client code. For example, the Python proxy for this instance will have a type with this name.
Note: this function is typically overridden using the BEGIN_CLASS_MEMBER_REGISTRATION macro.
size_t turi::supervised::supervised_learning_model_base::num_examples | ( | ) | const |
Get the number of examples in the model
size_t turi::supervised::supervised_learning_model_base::num_features | ( | ) | const |
Get the number of feature columns in the model
size_t turi::supervised::supervised_learning_model_base::num_unpacked_features | ( | ) | const |
Get the number of features in the model (unpacked)
|
virtualinherited |
Declare the base registration function. This class has to be handled specially; the macros don't work here due to the override declarations.
Reimplemented in turi::model_proxy.
|
virtual |
Make predictions using a trained supervised_learning model.
[in] | test_X | Test data (only independent variables) |
[in] | output_type | Type of prediction. |
Reimplemented in turi::supervised::xgboost::xgboost_model.
|
inlinevirtual |
Same as predict(ml_data), but takes SFrame as input.
Definition at line 299 of file supervised_learning.hpp.
|
inlinevirtual |
Methods with default implementations but are in-flux during the
Predict for a single example.
[in] | x | Single example. |
[in] | output_type | Type of prediction. |
Definition at line 226 of file supervised_learning.hpp.
|
inlinevirtual |
Predict for a single example.
[in] | x | Single example. |
[in] | output_type | Type of prediction. |
Reimplemented in turi::supervised::logistic_regression, turi::supervised::linear_svm, and turi::supervised::linear_regression.
Definition at line 241 of file supervised_learning.hpp.
|
inlinevirtual |
Predict for a single example.
[in] | x | Single example. |
[in] | output_type | Type of prediction. |
Reimplemented in turi::supervised::logistic_regression, turi::supervised::linear_svm, and turi::supervised::linear_regression.
Definition at line 256 of file supervised_learning.hpp.
|
inlinevirtual |
Make multiclass predictions using a trained supervised_learning model.
[in] | test_X | Test data (only independent variables) |
[in] | output_type | Type of prediction. |
[in] | topk | Number of classes to return. |
Definition at line 326 of file supervised_learning.hpp.
|
virtual |
Make multiclass predictions using a trained supervised_learning model.
[in] | test_X | Test data (only independent variables) |
[in] | output_type | Type of prediction. |
[in] | topk | Number of classes to return. |
Reimplemented in turi::supervised::xgboost::xgboost_model.
|
protectedinherited |
Registers default argument values
|
protectedinherited |
Adds a docstring for the specified function or property name.
|
protectedinherited |
Adds a function with the specified name, and argument list.
|
protectedinherited |
Adds a property getter with the specified name.
|
protectedinherited |
Adds a property setter with the specified name.
|
inlinevirtualinherited |
Serializes the toolkit class. Must save the class to the file format version matching that of get_version().
Reimplemented in turi::kmeans::kmeans_model, turi::recsys::recsys_model_base, turi::model_proxy, turi::supervised::xgboost::xgboost_model, turi::pattern_mining::fp_growth, turi::text::topic_model, turi::supervised::logistic_regression, turi::supervised::linear_svm, turi::sdk_model::feature_engineering::random_projection, turi::text::alias_topic_model, turi::supervised::linear_regression, turi::sdk_model::feature_engineering::feature_binner, turi::sdk_model::feature_engineering::sample_transformer, turi::sdk_model::feature_engineering::transformer_base, turi::sdk_model::feature_engineering::count_featurizer, and turi::simple_model.
Definition at line 87 of file model_base.hpp.
|
inherited |
Save a toolkit class to a data stream.
|
inherited |
Save a toolkit class to disk.
url | The destination url to store the class. |
sidedata | Any additional side information |
|
inlinevirtual |
A setter for models that use Armadillo for model coefficients.
Reimplemented in turi::supervised::logistic_regression, turi::supervised::linear_svm, and turi::supervised::linear_regression.
Definition at line 432 of file supervised_learning.hpp.
|
inlinevirtual |
Set the default evaluation metric during model evaluation.
Reimplemented in turi::supervised::xgboost::boosted_trees_classifier, turi::supervised::xgboost::random_forest_classifier, turi::supervised::logistic_regression, and turi::supervised::linear_svm.
Definition at line 462 of file supervised_learning.hpp.
|
inlinevirtual |
Set the default evaluation metric for progress tracking.
Reimplemented in turi::supervised::xgboost::boosted_trees_classifier, turi::supervised::xgboost::random_forest_classifier, turi::supervised::logistic_regression, and turi::supervised::linear_svm.
Definition at line 469 of file supervised_learning.hpp.
|
inline |
Set the evaluation metric. Set to RMSE by default.
Definition at line 439 of file supervised_learning.hpp.
|
inline |
Set the Extra Warnings output. These warnings include telling the user about low-variance features, etc...
Definition at line 455 of file supervised_learning.hpp.
|
inherited |
Set one of the options in the algorithm.
The value are checked with the requirements given by the option instance.
[in] | name | Name of the option. |
[in] | value | Value for the option. |
|
inherited |
Sets a property. The new value of the property should appear in the argument map under the key "value".
|
inline |
Set the evaluation metric. Set to RMSE by default.
Definition at line 447 of file supervised_learning.hpp.
|
inlinevirtual |
Returns true if the model can handle missing value
Reimplemented in turi::supervised::xgboost::xgboost_model.
Definition at line 628 of file supervised_learning.hpp.
|
pure virtual |
Train a supervised_learning model.
Implemented in turi::supervised::logistic_regression, turi::supervised::xgboost::xgboost_model, turi::supervised::linear_svm, and turi::supervised::linear_regression.
|
pure virtualinherited |
Returns a unique identifier for the toolkit class. It can be any unique ID. The UID is only used at runtime (to determine the concrete type of an arbitrary model_base instance) and is never stored.
Note: this function is typically overridden using the BEGIN_CLASS_MEMBER_REGISTRATION macro.
Implemented in turi::model_proxy.
|
protectedinherited |
All things python
Definition at line 206 of file ml_model.hpp.